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The Spin Structure of the Proton
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This article reviews our present understanding of the QCD spin structure of the proton. We first
outline the proton spin puzzle and its possible resolution in QCD. We then review the present
and next generation of experiments to resolve the proton’s spin-flavour structure, explaining the
theoretical issues involved, the present status of experimental investigation, and the open questions
and challenges for future investigation.

I. INTRODUCTION

Understanding the spin structure of the proton is
one of the most challenging problems facing subatomic
physics: How is the spin of the proton built up out from
the intrinsic spin and orbital angular momentum of its
quark and gluonic constituents ? What happens to spin
in the transition between current and constituent quarks
in low-energy quantum chromodynamics (QCD) ? Key
issues include the role of polarized glue and gluon topol-
ogy in building up the spin of the proton.

Our present knowledge about the spin structure of the
nucleon comes from polarized deep inelastic scattering
and new experiments in semi-inclusive polarized deep in-
elastic scattering, polarized proton-proton collisions and
polarized photoproduction experiments.

The present excitement and global programme in QCD
spin physics was inspired by an intriguing discovery in
polarized deep inelastic scattering. Following pioneer-
ing experiments at SLAC (Alguard et al., 1976, 1978;
Baum et al., 1983), recent experiments in fully inclu-
sive polarized deep inelastic scattering (pDIS) have ex-
tended measurements of the nucleon’s g1 spin dependent
structure function to lower values of Bjorken x where
the nucleon’s sea becomes important – for a review see
Windmolders (1999). From the first moment of g1, these
experiments have been interpreted to imply a small value
for the flavour-singlet axial-charge:

g
(0)
A

∣∣
pDIS

= 0.2 − 0.35. (1)

This result is particularly interesting because g
(0)
A is in-

terpreted in the parton model as the fraction of the pro-
ton’s spin which is carried by the intrinsic spin of its
quark and antiquark constituents. The value (1) is about
half the prediction of relativistic constituent quark mod-
els (∼ 60%). When combined with the octet axial charge

measured in hyperon beta-decays (g
(8)
A = 0.58 ± 0.03) it

corresponds to a negative strange-quark polarization

∆s = −0.10 ± 0.04 (2)
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(polarized in the opposite direction to the spin of the
proton).

The small value of g
(0)
A |pDIS extracted from polarized

deep inelastic scattering has inspired vast experimental
and theoretical activity to understand the spin structure
of the proton (and related connections to the axial U(1)
problem).

New experiments are underway or being planned to
map out the proton’s spin-flavour structure and to mea-
sure the amount of spin carried by the valence and
sea quarks and by polarized gluons in the polarized
proton. These include semi-inclusive polarized deep
inelastic scattering (COMPASS at CERN and HER-
MES at DESY), polarized proton-proton collisions at
the world’s first polarized proton-proton collider RHIC
(Bunce et al., 2000), and future polarized ep collider
studies (Bass and De Roeck, 2002). Experiments at Jef-
ferson Lab are mapping out the valence region at large
Bjorken x (x close to one) and promise to yield exciting
new information on confinement related dynamics. A
direct and independent, weak interaction, measurement

of g
(0)
A and the strange quark axial charge could be per-

formed using elastic neutrino-proton scattering. Com-
paring the values of ∆s extracted from high-energy po-
larized deep inelastic scattering and low-energy νp elas-
tic scattering will provide vital information on the QCD
structure of the proton. Experiments with transversely
polarized targets are just beginning and promise to reveal
new information about the spin structure of the proton
including tests of the Burkhardt-Cottingham sum rule for
the nucleon’s g2 second spin dependent structure function
and measurements of a whole new family of “transversity
observables”. Exclusive measurements of photon and me-
son production in deeply-virtual-photon nucleon scatter-
ing carry information about quark orbital momentum in
the proton. A vigorous programme to study these reac-
tions is being designed and investigated at several major
world laboratories.

The purpose of this article is to review our present
understanding of the proton spin problem (the small

value of g
(0)
A |pDIS extracted from polarized deep inelas-

tic scattering) and the physics of the new and ongoing
programme aimed at resolving the spin-flavour structure
of the nucleon.

In the first half of this review we detail the main the-
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oretical issues involved and the relationship between the
spin structure of the proton and chiral symmetry. In the
second half we give an overview of the present global pro-
gramme aimed at disentangling the spin-flavour structure
of the proton and the exciting prospects for the new gen-
eration of experiments aimed at resolving the proton’s
internal spin structure.

Complementary review articles on the spin structure
of the proton, each with a different emphasis, are given
in Anselmino et al. (1995), Cheng (1996), Shore (1998),
Lampe and Reya (2000), Fillipone and Ji (2001), Jaffe
(2001), Barone et al. (2002) and Stoesslein (2002).

A. Spin and the proton spin problem

Spin plays an essential role in particle interactions and
the fundamental structure of matter, ranging from the
subatomic world through to large-scale macroscopic ef-
fects in condensed matter physics (e.g. Bose-Einstein
condensates, superfluidity, and exotic phases of low tem-
perature 3He) and the structure of dense stars. Spin
is essential for the stability of the known Universe. In
applications, polarized neutron beams are used to probe
the structure of condensed matter and materials systems.
Manipulating the spin of the electron may prove to be a
key ingredient in designing and constructing a quantum
computer – the new field of “spintronics” (Zutic et al.,
2004).

Spin is the characteristic property of a particle besides
its mass and gauge charges. The two invariants of the
Poincare group are

PµPµ = M2

WµWµ = −M2s(s+ 1). (3)

Here P and W denote the momentum and Pauli-
Lubanski spin vectors respectively, M is the particle mass
and s denotes its spin. The spin of a particle, whether
elementary or composite, determines its equation of mo-
tion and its statistics properties – for the story of the
discovery of spin and its properties, see Tomonaga (1997)
and Martin (2002). Spin 1

2 particles are governed by the
Dirac equation and Fermi-Dirac statistics whereas spin
0 and spin 1 particles are governed by the Klein-Gordon
equation and Bose-Einstein statistics.

The story of the proton’s spin dates from Denni-
son’s discovery that the proton is a fermion of spin 1

2
(Dennison, 1927). Six years later Estermann and Stern
(1933) measured the proton’s anomalous magnetic mo-
ment, µp = 2.79 Bohr magnetons, revealing that the
proton is not pointlike and has internal structure. The
challenge to understand the structure of the proton had
begun!

We now understand the proton as a bound state
of three confined valence quarks (spin 1

2 ) interacting
through spin-one gluons, with the gauge group being
colour SU(3) (Thomas and Weise, 2001). The proton is

special because of confinement, dynamical chiral symme-
try breaking and the very strong colour gauge fields at
large distances.

Before embarking on a detailed study of the spin struc-
ture of the proton it is essential to understand why the

small value of g
(0)
A measured in polarized deep inelas-

tic scattering caused such excitement and why it has so
much challenged our understanding of the structure of
the proton.

Many elements of subatomic physics and quantum field
theory are important in our understanding of the proton
spin problem. These include:

• the dispersion relations for polarized photon-
nucleon scattering,

• Regge theory and the high-energy behaviour of
scattering amplitudes,

• the renormalization of the operators which enter
the light-cone operator product expansion descrip-
tion of high energy polarized deep inelastic scatter-
ing,

• perturbative QCD: the physics of large transverse
momentum plus parton model factorization,

• the non-perturbative and non-local topological
properties of gluon gauge fields in QCD and their
relation to the axial U(1) problem,

• the role of gluon dynamics in dynamical chiral sym-
metry breaking (the large mass of the η and η′

mesons and the absence of a flavour-singlet pseu-
doscalar Goldstone boson in spontaneous chiral
symmetry breaking).

The proton’s spin vector sµ is measured through the
forward matrix element of the axial-vector current

2Msµ = 〈p, s| ψγµγ5ψ |p, s〉 (4)

where ψ denotes the proton field operator and M is the
proton mass. The quark axial charges

2Msµ∆q = 〈p, s| qγµγ5q |p, s〉 (5)

then measure information about the quark “spin content”
of the proton. The flavour dependent axial charges ∆u,
∆d and ∆s can be written as linear combinations of the
isovector, SU(3) octet and flavour-singlet axial charges

g
(3)
A = ∆u− ∆d

g
(8)
A = ∆u+ ∆d− 2∆s

g
(0)
A = ∆u+ ∆d+ ∆s. (6)

In semi-classical quark models ∆q is interpreted as the
amount of spin carried by quarks and antiquarks of
flavour q.
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The Goldberger-Treiman relation relates the isovector

axial charge g
(3)
A to the product of the pion decay con-

stant fπ and the pion-nucleon coupling constant gπNN ,
viz.

2Mg
(3)
A = fπgπNN (7)

through spontaneously broken chiral symmetry
(Adler and Dashen, 1968). The Goldberger-Treiman
relation leads immediately to the result that the spin
structure of the proton is related to the dynamics of
chiral symmetry breaking.

What happens to gluonic degrees of freedom ?
The axial anomaly, a fundamental property of quan-

tum field theory, tells us that the axial-vector current
which measures the quark “spin content” of the proton
cannot be treated independently of the gluon fields that
the quarks live in and that the quark “spin content” is
linked to the physics of dynamical axial U(1) symmetry
breaking in the flavour-singlet channel. For each flavour
q the gauge invariantly renormalized axial-vector current
satisfies the anomalous divergence equation (Adler, 1969;
Bell and Jackiw, 1969)

∂µ
(
qγµγ5q

)
= 2mqiγ5q +

αs

4π
GµνG̃

µν . (8)

Here m denotes the quark mass and αs

4πGµνG̃
µν is the

topological charge density. The anomaly is important in

the flavour-singlet channel and intrinsic to g
(0)
A . It cancels

in the non-singlet axial-vector currents which define g
(3)
A

and g
(8)
A . In the QCD parton model the anomaly corre-

sponds to physics at the maximum transverse momentum
squared (Carlitz et al., 1988). It also involves non-local
structure associated with gluon gauge-field topology in
QCD (Bass, 1998, 2003b; Jaffe and Manohar, 1990). In
dynamical axial U(1) symmetry breaking the anomaly
and gluon topology are associated with the large masses
of the η and η′ mesons.

What values should we expect for the ∆q ?
First, consider the static quark model. The simple

SU(6) proton wavefunction

|p ↑〉 =
1√
2
|u ↑ (ud)S=0〉 +

1√
18

|u ↑ (ud)S=1〉

−1

3
|u ↓ (ud)S=1〉 −

1

3
|d ↑ (uu)S=1〉

+

√
2

3
|d ↓ (uu)S=1〉 (9)

yields the values g
(3)
A = 5

3 and g
(8)
A = g

(0)
A = 1.

In relativistic quark models one has to take into ac-

count the four-component Dirac spinor ψ =

(
f

σ.r̂g

)
. The

lower component of the Dirac spinor is p-wave with in-
trinsic spin primarily pointing in the opposite direction
to spin of the nucleon. Relativistic effects renormal-
ize the axial charges obtained from SU(6) by the fac-
tor (f2 − 1

3g
2) with a net transfer of angular momentum

from intrinsic spin to orbital angular momentum – see
e.g. Jaffe and Manohar (1990).

Relativistic constituent quark models (which do not in-
clude gluonic effects associated with the axial anomaly)

generally predict values of g
(3)
A ≃ 1.25 and g

(8)
A ∼ g

(0)
A ≃

0.6. For example, consider the MIT Bag Model. There

(f2 − 1
3g

2) = 0.65 reducing g
(3)
A from 5

3 to 1.09 and g
(0)
A

to 0.65. Centre of mass motion then increases the axial
charges by about 20% bringing g

(3)
A close to its physical

value 1.26. Pion cloud effects are also important. In the
SU(2) Cloudy Bag model one finds renormalization fac-
tors equal to 0.94 for the isovector axial charge and 0.8
for the isosinglet axial charges (Schreiber and Thomas,
1988) corresponding to a shift of total angular momen-
tum from intrinsic spin into orbital angular momentum.

The resultant predictions are g
(3)
A ≃ 1.25 (in agreement

with experiment) and g
(0)
A = g

(8)
A ≃ 0.6. (Note that, at

this level, relativistic quark-pion coupling models con-
tain no explicit strange quark or gluon degrees of free-
dom with the gluonic degrees of freedom understood to
be integrated out into the scalar confinement potential.)

The model prediction g
(8)
A ≃ 0.6 agrees with the value

extracted from hyperon beta-decays (g
(8)
A = 0.58 ± 0.03

(Close and Roberts, 1993)) whereas the Bag model pre-

diction for g
(0)
A exceeds the measured value of g

(0)
A |pDIS

by a factor of 2-3.
The overall picture of the spin structure of the pro-

ton that has emerged from a combination of experiment
and theoretical QCD studies can be summarized in the
following key observations:

1. Constituent quark model predictions work remark-
ably well for the isovector part of the nucleon’s g1
spin structure function (gp

1 − gn
1 ): both for the first

moment
∫ 1

0 dx(g
p
1 − gn

1 ) ∼ 1
6g

(3)
A which is predicted

by the Bjorken sum rule (Bjorken, 1966, 1970) and
also over the whole presently measured range of
Bjorken x (Bass, 1999). This includes the SLAC
“small x” region (0.02 < x < 0.1) – see Section
IX.B below – where one would, a priori, not nec-
essarily expect quark model results to apply. Con-
stituent quark model physics seems to be impor-
tant in the spin structure of the proton probed at
deep inelastic Q2! Furthermore, one finds the puz-
zling result that in the presently measured kinemat-
ics where accurate data exist the isovector part of
g1 considerably exceeds the isoscalar part of g1 at
small Bjorken x – the opposite to what is observed
in unpolarized deep inelastic scattering.

2. In the singlet channel the first moment of the g1
spin structure function for polarized photon-gluon
fusion (γ∗g → qq̄) receives a negative contribution
−αs

2π from k2
t ∼ Q2, where kt is the quark trans-

verse momentum relative to the photon gluon di-
rection and Q2 is the virtuality of the hard photon
(Carlitz et al., 1988). It also receives a positive con-
tribution (proportional to the mass squared of the
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struck quark or antiquark) from low values of kt,
k2

t ∼ P 2,m2 where P 2 is the virtuality of the parent
gluon and m is the mass of the struck quark. The
contact interaction (kt ∼ Q) between the polar-
ized photon and the gluon is flavour-independent.
It is associated with the QCD axial anomaly and
measures the spin of the target gluon. The mass
dependent contribution is absorbed into the quark
wavefunction of the nucleon.

3. Gluon topology is associated with gluonic bound-
ary conditions in the QCD vacuum and has the po-

tential to induce a topological contribution to g
(0)
A

associated with Bjorken x equal to zero: topolog-
ical x = 0 polarization or, essentially, a spin “po-
larized condensate” inside a nucleon (Bass, 1998).
This topology term is associated with a potential
J = 1 fixed pole in the real part of the spin depen-
dent part of the forward Compton amplitude and,
if finite, is manifest as a “subtraction at infinity”
in the dispersion relation for g1 (Bass, 2003b). It
is associated with dynamical axial U(1) symmetry
breaking in the transition from constituent quarks
to current quarks in QCD.

Summarising these observations, QCD theoretical analy-
sis leads to the formula

g
(0)
A =

(∑

q

∆q − 3
αs

2π
∆g

)

partons

+ C∞. (10)

Here ∆gpartons is the amount of spin carried by polar-
ized gluon partons in the polarized proton and ∆qpartons

measures the spin carried by quarks and antiquarks car-
rying “soft” transverse momentum k2

t ∼ m2, P 2 where
m is the light quark mass and P is a typical gluon
virtuality (Altarelli and Ross, 1988; Carlitz et al., 1988;
Efremov and Teryaev, 1988); C∞ denotes the potential
non-perturbative gluon topological contribution which
has support only at Bjorken x equal to zero (Bass, 1998)
so that it cannot be directly measured in polarized deep
inelastic scattering.

Since ∆g ∼ 1/αs under QCD evolution, the polar-
ized gluon term [−αs

2π ∆g] in Eq.(10) scales as Q2 → ∞
(Altarelli and Ross, 1988; Efremov and Teryaev, 1988).
The polarized gluon contribution corresponds to two-
quark-jet events carrying large transverse momentum
kt ∼ Q in the final state from photon-gluon fusion
(Carlitz et al., 1988).

The topological term C∞ may be identified with a lead-
ing twist “subtraction at infinity” in the dispersion rela-

tion for g1, whence g
(0)
A |pDIS is identified with g

(0)
A − C∞

(Bass, 2003b). It probes the role of gluon topology in
dynamical axial U(1) symmetry breaking in the transi-
tion from current to constituent quarks in low energy

QCD. The deep inelastic measurement of g
(0)
A , Eq.(1), is

not necessarily inconsistent with the constituent quark
model prediction 0.6 if a substantial fraction of the spin

of the constituent quark is associated with gluon topol-
ogy in the transition from constituent to current quarks
(measured in polarized deep inelastic scattering).

A direct measurement of the strange-quark axial-
charge, independent of the analysis of polarized deep in-
elastic scattering data and any possible “subtraction at
infinity” correction, could be made using neutrino pro-
ton elastic scattering through the axial coupling of the
Z0 gauge boson.

The vital role of quark transverse momentum in
the formula (10) means that it is essential to en-
sure that the theory and experimental acceptance
are correctly matched when extracting information
from semi-inclusive measurements aimed at disentan-
gling the individual valence, sea and gluonic contribu-
tions. For example, recent semi-inclusive measurements
(Airapetian et al., 2004a,b) using a forward detector and
limited acceptance at large transverse momentum (kt ∼
Q) exhibit no evidence for the large negative polarized
strangeness polarization extracted from inclusive data
and may, perhaps, be more comparable with ∆qpartons

than the inclusive measurement (2), which has the polar-
ized gluon contribution included. Further semi-inclusive
measurements with increased luminosity and a 4π detec-
tor would be valuable. On the theoretical side, when
assessing models which attempt to explain the proton’s
spin structure it is important to look at the transverse
momentum dependence of the proposed dynamics plus
the model predictions for the shape of the spin structure
functions as a function of Bjorken x in addition to the

first moment and the nucleon’s axial charges g
(3)
A , g

(8)
A

and g
(0)
A .

New dedicated experiments are planned or underway
to map out the spin-flavour structure of the proton and,
especially, to measure the amount of gluon polarization
∆g.

Further interesting information about the structure of
the proton will come from the study of “transversity”
observables (Barone et al., 2002). Working in an infinite
momentum frame, these observables measure the distri-
bution of spin polarized transverse to the momentum of
the proton in a transversely polarized proton. Since ro-
tations and Euclidean boosts commute and a series of
boosts can convert a longitudinally polarized nucleon into
a transversely polarized nucleon at infinite momentum,
it follows that the difference between the transversity
and helicity distributions reflects the relativistic charac-
ter of quark motion in the nucleon. Furthermore, the
transversity spin distribution of the nucleon is charge-
parity odd (C = −1) and therefore valence like (glu-
ons decouple from its QCD evolution equation unlike the
flavour-singlet quark distributions appearing in g1) mak-
ing a comparison of the different spin dependent distribu-
tions most interesting. First measurements of transver-
sity observables in lepton nucleon and polarized pro-
ton proton scattering have been performed by the HER-
MES (Airapetian et al., 2004c) and RHIC (Adams et al.,
2004) experiments. Understanding the spin and trans-
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verse momentum dependence of different QCD processes
at work in the dynamics is a challenging experimental
and theoretical problem to pin down the precise reaction
mechanism.

One would also like to measure the internal orbital
angular momentum contributions to the proton’s spin.
Exclusive measurements of deeply virtual Compton scat-
tering and single meson production at large Q2 offer a
possible route to the angular momentum contribution
through the physics and formalism of generalized parton
distributions (Diehl, 2003; Goeke et al., 2001; Ji, 1998).

This Review is organized as follows. In the first part
(Sections II - VIII) we review the present status of the
proton spin problem focussing on the present experimen-
tal situation for tests of polarized deep inelastic spin sum-

rules and the theoretical understanding of g
(0)
A . In Sec-

tions II and III we give an overview of the derivation
of the spin sum-rules for polarized photon-nucleon scat-
tering, detailing the assumptions that are made at each
step. Here we explain how these sum rules could be af-
fected by potential subtraction constants (subtractions
at infinity) in the dispersion relations for the spin de-
pendent part of the forward Compton amplitude. We
next give a brief review of the partonic (Section IV) and
possible fixed pole (Section V) contributions to deep in-
elastic scattering. Fixed poles are well known to play
a vital role in the Adler sum-rule for W-boson nucleon
scattering (Adler, 1966) and the Schwinger term sum-rule
for the longitudinal structure function measured in un-
polarized deep inelastic ep scattering (Broadhurst et al.,
1973). We explain how fixed poles could, in principle,
affect the sum-rules for the first moments of the g1 and
g2 spin structure functions. For example, a subtraction
constant correction to the Ellis-Jaffe sum rule for the
first moment of the nucleon’s g1 spin dependent struc-
ture function would follow if there is a real constant term
in the spin dependent part of the deeply virtual forward
Compton scattering amplitude. Section VI discusses the
QCD axial anomaly and its possible role in understand-
ing the first moment of g1. The relationship between the
spin structure of the proton and chiral symmetry is out-
lined in Section VII. This first part of the paper concludes
with an overview in Section VIII of the different possible

explanations of the small value of g
(0)
A that have been pro-

posed in the literature, how they relate to QCD, and pos-
sible future experimental tests which could help clarrify
the key issues. In the second part (Sections IX-XII) we
focus on the new programme to disentangle the proton’s
spin-flavour structure and the Bjorken x dependence of
the separate valence, sea and gluonic contributions (Sec-
tion IX), the theory and experimental investigation of
transversity observables (Section X), quark orbital angu-
lar momentum and exclusive reactions (Section XI) and
the g1 spin structure function of the polarized photon
(Section XII). A summary of key issues and the chal-
lenging questions for the next generation of experiments
is given in Section XIII.

II. SCATTERING AMPLITUDES

In photon-nucleon scattering the spin dependent struc-
ture functions g1 and g2 are defined through the imagi-
nary part of the forward Compton scattering amplitude.
Consider the amplitude for forward scattering of a photon
carrying momentum qµ (q2 = −Q2 ≤ 0) from a polarized
nucleon with momentum pµ, mass M and spin sµ. Let
Jµ(z) denote the electromagnetic current in QCD. The
forward Compton amplitude

Tµν(q, p) = i

∫
d4z eiq.z〈p, s| T (Jµ(z)Jν(0)) |p, s〉 (11)

is given by the sum of spin independent (symmetric in µ
and ν) and spin dependent (antisymmetric in µ and ν)
contributions:

T S
µν =

1

2
(Tµν + Tνµ)

= −T1(gµν +
qµqν
Q2

)

+
1

M2
T2(pµ +

p.q

Q2
qµ)(pν +

p.q

Q2
qν)

(12)

and

TA
µν =

1

2
(Tµν − Tνµ)

=
i

M2
ǫµνλσq

λ

[
sσ(A1 +

ν

M
A2) −

1

M2
s.qpσA2

]
.

(13)

Here ν = p.q/M and ǫ0123 = +1; the proton spin vector
is normalized to s2 = −1. The form-factors T1, T2, A1

and A2 are functions of ν and Q2.
The hadron tensor for inclusive photon nucleon scat-

tering which contains the spin dependent structure func-
tions is obtained from the imaginary part of Tµν :

Wµν =
1

π
ImTµν =

1

2π

∫
d4z eiq.z〈p, s| [Jµ(z), Jν(0)] |p, s〉.

(14)
Here the connected matrix element is understood (indi-
cating that the photon interacts with the target and not
the vacuum). The spin independent and spin dependent
components of Wµν are

WS
µν = −W1(gµν+

qµqν
Q2

)+
1

M2
W2(pµ+

p.q

Q2
qµ)(pν+

p.q

Q2
qν)

(15)
and

WA
µν =

i

M2
ǫµνλσq

λ

[
sσ(G1 +

ν

M
G2) −

1

M2
s.qpσG2

]

(16)
respectively. The structure functions contain all of the
target dependent information in the deep inelastic pro-
cess.
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The cross sections for the absorption of a transversely
polarized photon with spin polarized parallel σ 3

2
and anti-

parallel σ 1
2

to the spin of the (longitudinally polarized)

target nucleon are:

σ 3
2

=
4π2α√
ν2 +Q2

[
W1 −

ν

M2
G1 +

Q2

M3
G2

]

σ 1
2

=
4π2α√
ν2 +Q2

[
W1 +

ν

M2
G1 −

Q2

M3
G2

]

(17)

where we use usual conventions for the virtual photon
flux factor (Roberts, 1990). The spin dependent and spin
independent parts of the inclusive photon nucleon cross
section are:

σ 1
2
− σ 3

2
=

8π2α√
ν2 +Q2

[
ν

M2
G1 −

Q2

M3
G2

]
(18)

and

σ 1
2

+ σ 3
2

=
8π2α√
ν2 +Q2

W1. (19)

The G2 spin structure function decouples from polarized
photoproduction. For real photons (Q2 = 0) one finds

the equation σ 1
2
− σ 3

2
= 8π2α

M2 G1. The cross section for

the absorption of a longitudinally polarized photon is:

σ0 =
4π2α√
ν2 +Q2

WL =
4π2α√
ν2 +Q2

[{
1 +

ν2

Q2

}
W2 −W1

]
.

(20)
The W2 structure function is measured in unpolar-
ized lepton nucleon scattering through the absorption of
transversely and longitudinally polarized photons.

Our present knowledge about the high-energy spin
structure of the nucleon comes from polarized deep in-
elastic scattering experiments. These experiments in-
volve scattering a high-energy charged lepton beam from
a nucleon target at large momentum transfer squared.
One measures the inclusive cross-section. The lepton
beam (electrons at DESY, JLab and SLAC and muons at
CERN) is longitudinally polarized. The nucleon target
may be either longitudinally or transversely polarized.

The relation between the deep inelastic lepton-nucleon
cross-sections and the photon-nucleon cross-sections dis-
cussed above is discussed and derived in various text-
books – e.g. Roberts (1990). Polarized deep inelastic
scattering experiments have so far all been performed us-
ing a fixed target. Consider polarized ep scattering. We
specialize to the target rest frame and let E denote the
energy of the incident electron which is scattered through
an angle θ to emerge in the final state with energy E′.
Let ↑↓ denote the longitudinal polarization of the elec-
tron beam. For a longitudinally polarized proton target
(with spin denoted ⇑⇓) the unpolarized and polarized

differential cross-sections are:
(
d2σ ↑⇓
dΩdE′

+
d2σ ↑⇑
dΩdE′

)

=
α2

4E2 sin4 θ
2

[
2 sin2 θ

2
W1 + cos2

θ

2
W2

]

(21)

and
(
d2σ ↑⇓
dΩdE′

− d2σ ↑⇑
dΩdE′

)

=
4α2

M3Q2

E
′

E

[
M(E + E

′

cos θ) G1 −Q2 G2

]
.

(22)

For a target polarized transverse to the electron beam
the spin dependent part of the differential cross-section
is
(
d2σ ↑⇒
dΩdE′

−d
2σ ↑⇐
dΩdE′

)
=

4α2

M3Q2

E
′2

E
sin θ

[
M G1+2E G2

]
.

(23)

A. Scaling and polarized deep inelastic scattering

In high Q2 deep inelastic scattering the structure func-
tions exhibit approximate scaling. One finds:

M W1(ν,Q
2) → F1(x,Q

2)

ν W2(ν,Q
2) → F2(x,Q

2)
ν

M
G1(ν,Q

2) → g1(x,Q
2)

ν2

M2
G2(ν,Q

2) → g2(x,Q
2). (24)

The structure functions F1, F2, g1 and g2 scale modulo
perturbative QCD logarithmic evolution in Q2. Substi-
tuting (24) in the cross-section formula (22) for the longi-
tudinally polarized target one finds that the g2 contribu-
tion to the differential cross section and the longitudinal
spin asymmetry is suppressed relative to the g1 contri-
bution by the kinematic factor M

E ∼ 0, viz.

A1 =
σ 1

2
− σ 3

2

σ 1
2

+ σ 3
2

=
MνG1 −Q2G2

M3W1
=
g1 − Q2

ν2 g2

F1
→ g1

F1
.

(25)

For a transverse polarized target this kinematic suppres-
sion factor for g2 is missing meaning that transverse po-
larization is vital to measure g2. We refer to Roberts
(1990) and Windmolders (2002) for the procedure of
how the spin dependent structure functions are extracted
from the spin asymmetries measured in polarized deep
inelastic scattering.
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In the (pre-QCD) parton model the deep inelastic
structure functions F1 and F2 are written as

F1(x) =
1

2x
F2(x) =

1

2

∑

q

e2q{q + q̄}(x) (26)

and the polarized structure function g1 is

g1(x) =
1

2

∑

q

e2q∆q(x). (27)

Here eq denotes the electric charge of the struck quark
and

{q + q̄}(x) = (q↑ + q↑)(x) + (q↓ + q↓)(x)

∆q(x) = (q↑ + q↑)(x) − (q↓ + q↓)(x)

(28)

denote the spin-independent (unpolarized) and spin-
dependent quark parton distributions which measure the
distribution of quark momentum and spin in the pro-
ton. For example, q↑(x) is interpreted as the probabil-
ity to find an anti-quark of flavour q with plus compo-
nent of momentum xp+ (p+ is the plus component of
the target proton’s momentum) and spin polarized in the
same direction as the spin of the target proton. When
we integrate out the momentum fraction x the quantity

∆q =
∫ 1

0
dx ∆q(x) is interpreted as the fraction of the

proton’s spin which is carried by quarks (and anti-quarks)
of flavour q – hence the parton model interpretation of

g
(0)
A as the total fraction of the proton’s spin carried by

up, down and strange quarks. In QCD the flavour-singlet
combination of these quark parton distributions mixes
with the spin independent and spin dependent gluon dis-
tributions respectively under Q2 evolution. The gluon
parton distributions measure the momentum and spin
dependence of glue in the proton. The second spin struc-
ture function g2 has a non-trivial parton interpretation
(Jaffe, 1990) and vanishes without the effect of quark
transverse momentum – see e.g. Roberts (1990).

An overview of the world data on the nucleon’s g1 spin
structure function is shown in Figure 1 (which shows
xg1) and Figure 2 (which shows g1). There is a gen-
eral consistency between all data sets. The largest range
is provided by the SMC experiment (Adeva et al., 1998a,
1999), namely 0.00006 < x < 0.8 and 0.02 < Q2 < 100
GeV2. This experiment used proton and deuteron tar-
gets with 100-200 GeV muon beams. The final results
are given in (Adeva et al., 1998a). The low x data
from SMC (Adeva et al., 1999) are at a Q2 well below
1 GeV2, and the asymmetries are found to be compat-
ible with zero. The most precise data comes from the
electron scattering experiments at SLAC (E154 on the
neutron (Anthony et al., 1997) and E155 on the pro-
ton (Anthony et al., 1999, 2000)), JLab (Zheng et al.,
2004a,b) (on the neutron) and HERMES at DESY
(Ackerstaff et al., 1997; Airapetian et al., 1998) (on the
proton and neutron), with JLab focussed on the large

0

0.02

0.04

0.06xg1

proton

HERMES
HERMES prel.
HERMES prel. rev.

E143
E155

SMC

0

0.02

0.04 deuteron

-0.04

-0.02

0

0.02

E142
E154
JLab E99-117 prel.

x

neutron  (3He)

0.0001 0.001 0.01 0.1 1

FIG. 1 The world data on xg1 with data points shown
at the Q2 they were measured at. Figure courtesy of U.
Stoesslein.

x region. The recipes for extracting the neutron’s spin
structure function from experiments using a deuteron or
3He target are discussed in Piller and Weise (2000) and
Thomas (2002).

Note the large isovector component in the data at small
x (between 0.01 and 0.1) which considerably exceeds the
isoscalar component in the measured kinematics. This
result is in stark contrast to the situation in the unpo-
larized structure function F2 where the small x region
is dominated by isoscalar pomeron exchange. Given the
large experimental errors on the data little can presently
be concluded about g1 at the smallest x values (x less
than about 0.006).

The structure function data at different values of x
(Figs.1 and 2) are measured at different Q2 values in
the experiments, viz. xexpt. = x(Q2). For the ratios
g1/F1 there is no experimental evidence of Q2 depen-
dence in any given x bin. The E155 Collaboration at
SLAC found the following good phenomenological fit to
their final data set with Q2 > 1GeV2 and energy of the
hadronic final state W > 2GeV (Anthony et al., 2000):

gp
1

F p
1

= x0.700(0.817 + 1.014x− 1.489x2) x (1 +
cp

Q2
)

gn
1

Fn
1

= x−0.335(−0.013− 0.330x+ 0.761x2) x (1 +
cn

Q2
).

(29)

The coefficients cp = −0.04 ± 0.06 and cn = 0.13 ±
0.45 describing the Q2 dependence are found to be



8

0

0.2

0.4

0.6

0.8

g1

proton

HERMES prel. rev.

-0.8

-0.6

-0.4

-0.2

0

0.2
deuteron

HERMES
HERMES prel.

E143
E155
SMC

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1

E142
E154
JLab E99-117 prel.

x

neutron  (3He)

0.0001 0.001 0.01 0.1 1

FIG. 2 The world data on g1 with data points shown
at the Q2 they were measured at. Figure courtesy of U.
Stoesslein.

small and consistent with zero. The Q2 dependence
of the g1 spin structure function is shown in Fig.3. It
is useful to compare data at the same Q2, e.g. for
the comparison of experimental data with the predic-
tions of deep inelastic sum-rules. To this end, the
measured x points are shifted to the same Q2 us-
ing either the (approximate) Q2 independence of the
asymmetry or performing next-to-leading-order (NLO)
QCD motivated fits (Adeva et al., 1998b; Altarelli et al.,
1997; Anthony et al., 2000; Blümlein and Böttcher,
2002; Gehrmann and Stirling, 1996; Glück et al., 2001;
Goto et al., 2000; Hirai et al., 2004; Leader et al., 2002)
to the measured data and evolving the measured data
points all to the same value of Q2.

B. Regge theory and the small x behaviour of spin
structure functions

The small x or high energy behaviour of spin structure
functions is an important issue both for the extrapolation
of data needed to test spin sum rules for the first moment
of g1 and also in its own right.

Regge theory makes predictions for the high-energy
asymptotic behaviour of the structure functions:

W1 ∼ να

W2 ∼ να−2

G1 ∼ να−1

G2 ∼ να−1. (30)

0

0.5

1

1.5

2

2.5

3

3.5

4

1 10 10
2

E143

Q2 (GeV2)

g
p 1(

x,
Q

2 )+
c(

x)

HERMES

E155

EMC

SMC

simple fit

NLO QCD fit

FIG. 3 Q2 dependence of gp
1 for Q2 > 1GeV2 together

with a simple fit according to (Anthony et al., 2000) and
a NLO perturbative QCD fit from Stoesslein (2002).

Here α denotes the (effective) intercept for the leading
Regge exchange contributions. The Regge predictions for
the leading exchanges include α = 1.08 for the pomeron
contributions to W1 and W2, and α ≃ 0.5 for the ρ and ω
exchange contributions to the spin independent structure
functions.

For G1 the leading gluonic exchange behaves as
{ln ν}/ν (Bass and Landshoff, 1994; Close and Roberts,
1994). In the isovector and isoscalar channels there
are also isovector a1 and isoscalar f1 Regge exchanges
plus contributions from the pomeron-a1 and pomeron-
f1 cuts (Heimann, 1973). If one makes the usual as-
sumption that the a1 and f1 Regge trajectories are
straight lines parallel to the (ρ, ω) trajectories then
one finds αa1 ≃ αf1 ≃ −0.4, within the phenomeno-
logical range −0.5 ≤ αa1 ≤ 0 (Ellis and Karliner,
1988). Taking the masses of the a1(1260) and a3(2070)
states (plus the a1(1640) and a3(2310) states) from the
Particle Data Group (2004) yields two parallel a1 tra-
jectories with slope ∼ 0.75GeV−2 and with the leading
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trajectory having slightly lower intercept: αa1 ≃ −0.18.
For this value of the a1 intercept the effective inter-

cepts corresponding to the soft-pomeron a1 cut and the
hard-pomeron a1 cut are ≃ −0.1 and ≃ +0.25 respec-
tively if one takes the soft and hard pomerons as two
distinct exchanges (Cudell et al., 1999) 1. In the frame-
work of the Donnachie-Landshoff-Nachtmann model of
soft pomeron physics (Donnachie and Landshoff, 1988;
Landshoff and Nachtmann, 1987) the logarithm in the
ln ν
ν contribution comes from the region of internal mo-

mentum where two non-perturbative gluons are radiated
collinear with the proton (Bass and Landshoff, 1994).

For G2 one expects contributions from possible multi-
pomeron (three or more) cuts (∼ (ln ν)−5) and Regge-
pomeron cuts (∼ ναi(0)−1/ ln ν) with αi(0) < 1 (since
the pomeron does not couple to A1 or A2 as a single
gluonic exchange) (Ioffe et al., 1984).

In terms of the scaling structure functions of deep in-
elastic scattering the relations (30) become

F1 ∼ 1

x

α

F2 ∼ 1

x

α−1

g1 ∼ 1

x

α

g2 ∼ 1

x

α+1

. (31)

For deep inelastic values ofQ2 there is some debate about
the application of Regge arguments. In the conventional
approach the effective intercepts for small x, or high ν,
physics tend to increase with increasing Q2 through per-
turbative QCD evolution which acts to shift the weight
of the structure functions to smaller x. The polarized
isovector combination gp

1 − gn
1 is observed to rise in the

small x data from SLAC and SMC like ∼ x−0.5 although
it should be noted that, in the measured x range, this
exponent could be softened through multiplication by a
(1 − x)n factor – for example associated with perturba-
tive QCD counting rules at large x (close to one). For
example, the exponent x−0.5 could be modified to about
x−0.25 through multiplication by a factor (1 − x)6. In
an alternative approach Cudell et al. (1999) have argued
that the Regge intercepts should be independent of Q2

and that the “hard pomeron” revealed in unpolarized
deep inelastic scattering at HERA is a distinct exchange
independent of the soft pomeron which should also be
present in low Q2 photoproduction data.

Detailed investigation of spin dependent Regge the-
ory and the low x behaviour of spin structure functions
could be performed at SLAC or using a future polarized
ep collider (e-RHIC) where measurements could be ob-
tained through a broad range of Q2 from photoproduc-
tion through the “transition region” to polarized deep

1 I thank P.V. Landshoff for valuable discussions on this issue.

inelastic scattering. These measurements would provide
a baseline for investigations of perturbative QCD moti-
vated small x behaviour in g1. Open questions include:
Does the rise in gp

1 − gn
1 at small Bjorken x persist to

small values of Q2 ? How does this rise develop as a func-
tion of Q2 ? Further possible exchange contributions in
the flavour-singlet sector associated with polarized glue
could also be looked for. For example, colour coherence
predicts that the ratio of polarized to unpolarized gluon
distributions ∆g(x)/g(x) ∝ x as x → 0 (Brodsky et al.,
1995) suggesting that, perhaps, there is a spin analogue of
the hard pomeron with intercept about 0.45 correspond-
ing to the polarized gluon distribution.

The s and t dependence of spin dependent Regge the-
ory will also be investigated by the pp2pp experiment
(Bültmann et al., 2003) at RHIC which is studying po-
larized proton proton elastic scattering at centre of mass
energies 50 <

√
s < 500GeV and four momentum trans-

fer 0.0004 < |t| < 1.3GeV2.

III. DISPERSION RELATIONS AND SPIN SUM RULES

Sum rules for the (spin) structure functions measured
in deep inelastic scattering are derived using dispersion
relations and the operator product expansion. For fixed
Q2 the forward Compton scattering amplitude Tµν(ν,Q2)
is analytic in the photon energy ν except for branch cuts
along the positive real axis for |ν| ≥ Q2/2M . Crossing
symmetry implies that

A∗
1(Q

2,−ν) = A1(Q
2, ν)

A∗
2(Q

2,−ν) = −A2(Q
2, ν). (32)

The spin structure functions in the imaginary parts of A1

and A2 satisfy the crossing relations

G1(Q
2,−ν) = −G1(Q

2, ν)

G2(Q
2,−ν) = +G2(Q

2, ν). (33)

For g1 and g2 these relations become

g1(x,Q
2) = +g1(−x,Q2)

g2(x,Q
2) = +g2(−x,Q2). (34)

We use Cauchy’s integral theorem and the crossing rela-
tions to derive dispersion relations for A1 and A2. As-
suming that the asymptotic behaviour of the spin struc-
ture functions G1 and G2 yield convergent integrals we
are tempted to write the two unsubtracted dispersion re-
lations:

A1(Q
2, ν) =

2

π

∫ ∞

Q2/2M

ν′dν′

ν′2 − ν2
ImA1(Q

2, ν′)

A2(Q
2, ν) =

2

π
ν

∫ ∞

Q2/2M

dν′

ν′2 − ν2
ImA2(Q

2, ν′).

(35)
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These expressions can be rewritten as dispersion relations
involving g1 and g2. We define:

α1(ω,Q
2) =

ν

M
A1

α2(ω,Q
2) =

ν2

M2
A2. (36)

Then, the formulae in (35) become

α1(ω,Q
2) = 2ω

∫ ∞

1

dω′

ω′2 − ω2
g1(ω

′, Q2)

α2(ω,Q
2) = 2ω3

∫ ∞

1

dω′

ω′2(ω′2 − ω2)
g2(ω

′, Q2)

(37)

where ω = 1
x = 2Mν

Q2 .

In general there are two alternatives to an unsub-
tracted dispersion relation.

1. First, if the high energy behaviour of G1 and/or
G2 (at some fixed Q2) produced a divergent inte-
gral, then the dispersion relation would require a
subtraction. Regge predictions for the high energy
behaviour of G1 and G2 – see Eq.(30) – each lead
to convergent integrals so this scenario is not ex-
pected to occur, even after including the possible
effects of QCD evolution.

2. Second, even if the integral in the unsubtracted re-
lation converges, there is still the potential for a
“subtraction at infinity”. This scenario would oc-
cur if the real part of A1 and/or A2 does not van-
ish sufficiently fast enough when ν → ∞ so that
we pick up a finite contribution from the contour
(or “circle at infinity”). In the context of Regge
theory such subtractions can arise from fixed poles
(with J = α(t) = 0 in A2 or J = α(t) = 1 in A1

for all t) in the real part of the forward Compton
amplitude. We shall discuss these fixed poles and
potential subtractions in Section V.

In the presence of a potential “subtraction at infinity”
the dispersion relations (35) are modified to:

A1(Q
2, ν) = P1(ν,Q

2)

+
2

π

∫ ∞

Q2/2M

ν′dν′

ν′2 − ν2
ImA1(q

2, ν′)

A2(Q
2, ν) = P2(ν,Q

2)

+
2

π
ν

∫ ∞

Q2/2M

dν′

ν′2 − ν2
ImA2(q

2, ν′).

(38)

Here

P1(ν,Q
2) = β1(Q

2)

P2(ν,Q
2) = β2(Q

2)
M

ν
(39)

denote the subtraction constants. The crossing relations
(32) for A1 and A2 are observed by the functions Pi.
Scaling requires that β1(Q

2) and β2(Q
2) (if finite) must

be nonpolynomial in Q2 – see Section V. The equations
(38) can be rewritten:

α1(ω,Q
2) =

Q2

2M2
β1(Q

2) ω +

2ω

∫ ∞

1

dω′

ω′2 − ω2
g1(ω

′, Q2)

α2(ω,Q
2) =

Q2

2M2
β2(Q

2) ω +

2ω3

∫ ∞

1

dω′

ω′2(ω′2 − ω2)
g2(ω

′, Q2).

(40)

Next, the fact that both α1 and α2 are analytic for |ω| ≤ 1
allows us to make the Taylor series expansions (about
ω = 0)

α1(x,Q
2) =

Q2

2M2
β1(Q

2)
1

x

+
2

x

∑

n=0,2,4,..

(
1

xn

)∫ 1

0

dy yng1(y,Q
2)

α2(x,Q
2) =

Q2

2M2
β2(Q

2)
1

x

+
2

x3

∑

n=0,2,4,..

(
1

xn

)∫ 1

0

dy yn+2g2(y,Q
2)

(41)

with x = 1
ω .

These equations form the basis for the spin sum rules
for polarized photon nucleon scattering. We next out-
line the derivation of the Bjorken (Bjorken, 1966, 1970)
and Ellis-Jaffe (Ellis and Jaffe, 1974) sum rules for the
isovector and flavour-singlet parts of g1 in polarized
deep inelastic scattering, the Burkhardt-Cottingham sum
rule for G2 (Burkhardt and Cottingham, 1970), and the
Gerasimov-Drell-Hearn sum rule for polarized photopro-
duction (Drell and Hearn, 1966; Gerasimov, 1965). Each
of these spin sum rules assumes no subtraction at infinity.

A. Deep inelastic spin sum rules

Sum rules for polarized deep inelastic scattering are
derived by combining the dispersion relation expressions
(41) with the light cone operator production expansion.
When Q2 → ∞ the leading contribution to the spin de-
pendent part of the forward Compton amplitude comes
from the nucleon matrix elements of a tower of gauge in-
variant local operators multiplied by Wilson coefficients :

TA
µν = iǫµνλσq

λ
∑

n=0,2,4,..

(
− 2

q2

)n+1

qµ1qµ2 ...qµn
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∑

i=q,g

Θ
(i)
σ{µ1...µn}E

i
n(
Q2

µ2
, αs)

(42)

where

Θ
(q)
σ{µ1...µn} ≡ inψ̄γσγ5D{µ1

...Dµn}ψ − traces (43)

and

Θ
(g)
σ{µ1...µn} ≡ in−1ǫαβγσG

βγD{µ1
...Dµn−1G

α
µn} − traces.

(44)
Here Dµ = ∂µ + igAµ is the gauge covariant derivative
and the sum over even values of n in Eq.(42) reflects
the crossing symmetry properties of Tµν . The functions

Eq
n(Q2

µ2 , αs) and Eg
n(Q2

µ2 , αs) are the respective Wilson co-

efficents. (Note that, for simplicity, in this discussion
we consider the case of a single quark flavour with unit
charge and zero quark mass. The results quoted in Sec-
tion III.B below include the extra steps of using the full
electromagnetic current in QCD.)

The operators in Eq.(42) may each be written as the
sum of a totally symmetric operator and an operator with
mixed symmetry

Θσ{µ1...µn} = Θ{σµ1...µn} + Θ[σ,{µ1]...µn}. (45)

These operators have the matrix elements:

〈p, s|Θ{σµ1...µn}|p, s〉
= {sσpµ1 ...pµn

+ sµ1pσpµ2 ...pµn
+ ...} an

n+ 1
〈p, s|Θ[{σµ1]...µn}|p, s〉

= {(sσpµ1 − sµ1pσ)pµ2 ...pµn

+(sσpµ2 − sµ2pσ)pµ1 ...pµn
+ ...} dn

n+ 1
.

(46)

Now define ãn = a
(q)
n Eq

1n + a
(g)
n Eg

1n and d̃n = d
(q)
n Eq

2n +

d
(g)
n Eg

2n where Ei
1n and Ei

2n are the Wilson coefficients
for ai

n and di
n respectively. Combining equations (42)

and (46) one obtains the following equations for α1 and
α2:

α1(x,Q
2) + α2(x,Q

2) =
∑

n=0,2,4,...

ãn + nd̃n

n+ 1

1

xn+1

α2(x,Q
2) =

∑

n=2,4,...

n(d̃n − ãn)

n+ 1

1

xn+1
.

(47)

These equations are compared with the Taylor series ex-
pansions (41), whence we obtain the moment sum rules
for g1 and g2:

∫ 1

0

dxxng1 =
1

2
ãn − δn0

1

2

Q2

2M2
β1(Q

2) (48)

for = 0, 2, 4, ... and

∫ 1

0

dxxng2 =
1

2

n

n+ 1
(d̃n − ãn) (49)

for n = 2, 4, 6, ...

Note:

1. The first moment of g1 is given by the nucleon ma-
trix element of the axial vector current ψ̄γσγ5ψ.
There is no twist-two, spin-one, gauge-invariant, lo-
cal gluon operator to contribute to the first moment
of g1 (Jaffe and Manohar, 1990).

2. The potential subtraction term Q2

2M2 β1(Q
2) in the

dispersion relation in (41) multiplies a 1
x term in

the series expansion on the left hand side, and thus
provides a potential correction factor to sum rules
for the first moment of g1. It follows that the first
moment of g1 measured in polarized deep inelastic
scattering measures the nucleon matrix element of
the axial vector current up to this potential “sub-
traction at infinity” term, which corresponds to the
residue of any J = 1 fixed pole with nonpolynomial
residue contribution to the real part of A1.

3. There is no 1
x term in the operator product expan-

sion formula (47) for α2(x,Q
2). This is matched by

the lack of any 1
x term in the unsubtracted version

of the dispersion relation (41). The operator prod-
uct expansion provides no information about the
first moment of g2 without additional assumptions
concerning analytic continuation and the x ∼ 0
behaviour of g2 (Jaffe, 1990). We shall return to
this discussion in the context of the Burkhardt-
Cottingham sum rule for g2 in Section III.D below.

If there are finite subtraction constant corrections to one
(or more) spin sum rules, one can include the correction
by re-interpreting the relevant structure function as a
distribution with the subtraction constant included as
twice the coefficient of a δ(x) term (Broadhurst et al.,
1973).

B. g1 spin sum rules in polarized deep inelastic scattering

The value of g
(0)
A extracted from polarized deep in-

elastic scattering is obtained as follows. One includes
the sum over quark charges squared in Wµν and assumes
no twist-two subtraction constant (β1(Q

2) = O(1/Q4)).
The first moment of the structure function g1 is then
related to the scale-invariant axial charges of the target
nucleon by:

∫ 1

0

dx gp
1(x,Q2) =
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(
1

12
g
(3)
A +

1

36
g
(8)
A

){
1 +

∑

ℓ≥1

cNSℓ α
ℓ
s(Q)

}

+
1

9
g
(0)
A |inv

{
1 +

∑

ℓ≥1

cSℓα
ℓ
s(Q)

}
+ O(

1

Q2
)

− β1(Q
2)

Q2

4M2
.

(50)

Here g
(3)
A , g

(8)
A and g

(0)
A |inv are the isotriplet, SU(3) octet

and scale-invariant flavour-singlet axial charges respec-
tively. The flavour non-singlet cNSℓ and singlet cSℓ Wil-
son coefficients are calculable in ℓ-loop perturbative QCD
(Larin et al., 1997). One then assumes no twist-two sub-
traction constant (β1(Q

2) = O(1/Q4)) so that the axial
charge contributions saturate the first moment at leading
twist.

The first moment of g1 is constrained by low energy
weak interactions. For proton states |p, s〉 with momen-
tum pµ and spin sµ

2Msµ g
(3)
A = 〈p, s|

(
ūγµγ5u− d̄γµγ5d

)
|p, s〉

2Msµ g
(8)
A = 〈p, s|

(
ūγµγ5u+ d̄γµγ5d− 2s̄γµγ5s

)
|p, s〉.

(51)

Here g(3)

A = 1.2695 ± 0.0029 is the isotriplet axial charge
measured in neutron beta-decay; g(8)

A = 0.58 ± 0.03 is
the octet charge measured independently in hyperon beta
decays (using SU(3)) (Close and Roberts, 1993). (The
assumption of good SU(3) here is supported by the recent
KTeV measurement (Alavi-Harati et al., 2001) of the Ξ0

beta decay Ξ0 → Σ+eν̄.) The non-singlet axial charges
are scale invariant.

The scale-invariant flavour-singlet axial charge g
(0)
A |inv

is defined by

2Msµg
(0)
A |inv = 〈p, s| E(αs)J

GI
µ5 |p, s〉 (52)

where

JGI
µ5 =

(
ūγµγ5u+ d̄γµγ5d+ s̄γµγ5s

)
GI

(53)

is the gauge-invariantly renormalized singlet axial-vector
operator and

E(αs) = exp

∫ αs

0

dα̃s γ(α̃s)/β(α̃s) (54)

is a renormalization group factor which corrects for
the (two loop) non-zero anomalous dimension γ(αs)
(Kodaira, 1980) of JGI

µ5 and which goes to one in the

limit Q2 → ∞; β(αs) is the QCD beta function. We
are free to choose the QCD coupling αs(µ) at either a

hard or a soft scale µ. The singlet axial charge g
(0)
A |inv

is independent of the renormalization scale µ and cor-

responds to the three flavour g
(0)
A (Q2) evaluated in the

limit Q2 → ∞. If we take αs(µ
2
0) ∼ 0.6 as typical of the

infrared region of QCD, then the renormalization group
factor E(αs) ≃ 1 − 0.13 − 0.03 = 0.84 where -0.13 and
-0.03 are the O(αs) and O(α2

s) corrections respectively.
In terms of the flavour dependent axial-charges

2Msµ∆q = 〈p, s|qγµγ5q|p, s〉 (55)

the isovector, octet and singlet axial charges are:

g
(3)
A = ∆u− ∆d

g
(8)
A = ∆u+ ∆d− 2∆s

g
(0)
A ≡ g

(0)
A |inv/E(αs) = ∆u+ ∆d+ ∆s. (56)

The perturbative QCD coefficients in Eq.(50) have been
calculated to O(α3

s) precision (Larin et al., 1997). For
three flavours they evaluate as:
{
1 +

∑

ℓ≥1

cNSℓα
ℓ
s(Q)

}

=

[
1 − (

αs

π
) − 3.58333(

αs

π
)2 − 20.21527(

αs

π
)3 + ...

]

{
1 +

∑

ℓ≥1

cSℓα
ℓ
s(Q)

}

=

[
1 − 0.33333(

αs

π
) − 0.54959(

αs

π
)2 − 4.44725(

αs

π
)3

+...

]
. (57)

In the isovector channel the Bjorken sum rule (Bjorken,
1966, 1970)

IBj =

∫ 1

0

dx

(
gp
1 − gn

1

)

=
g
(3)
A

6

[
1 − αs

π
− 3.583

(αs

π

)2

− 20.215
(αs

π

)3
]

(58)

has been confirmed in polarized deep inelastic scattering
experiments at the level of 10% (where the perturbative
QCD coefficient expansion is truncated at O(α3

s)). The

E155 Collaboration at SLAC found
∫ 1

0
dx(gp

1 − gn
1 ) =

0.176± 0.003± 0.007 using a next-to-leading order QCD
motivated fit to evolve g1 data from the E154 and E155
experiments to Q2 = 5GeV2 – in good agreement with
the theoretical prediction 0.182±0.005 from the Bjorken
sum-rule (Anthony et al., 2000). Using a similar pro-

cedure the SMC experiment obtained
∫ 1

0 dx(g
p
1 − gn

1 ) =

0.174+0.024
−0.012, also at 5GeV2 (Adeva et al., 1998b) and also

in agreement with the theoretical prediction.
The evolution of the Bjorken integal (Abe et al., 1997)∫ 1

xmin
dx(gp

1 − gn
1 ) as a function of xmin is shown for the

SLAC data (E143 and E154) in Fig.4. Note that about
50% of the sum-rule comes from x values below about
0.12 and that about 10-20% comes from values of x less
than about 0.01.
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tion, the Bjorken sum rule is evaluated up to third order in
αs(Larin et al., 1997) and at Q2 = 5 (GeV/c)2. Error bars
on the data are dominated by systematic uncertainties and
are highly correlated point-to-point. Figure from Abe et al.

(1997).

Substituting the values of g
(3)
A and g

(8)
A from beta-

decays (and assuming no subtraction constant correc-
tion) in the first moment equation (50) polarized deep
inelastic data implies

g
(0)
A |pDIS = 0.15 − 0.35 (59)

for the flavour singlet (Ellis Jaffe) moment corresponding
to the polarized strangeness ∆s = −0.10 ± 0.04 quoted

in Section I. The measured value of g
(0)
A |pDIS compares

with the value 0.6 predicted by relativistic quark mod-
els and is less than 50% the value one would expect if
strangeness were not important (viz. g0

A = g8
A) and the

value predicted by relativistic quark models without ad-
ditional gluonic input.

The small x extrapolation of g1 data is the largest
source of experimental error on measurements of the nu-
cleon’s axial charges from deep inelastic scattering. The
first polarized deep inelastic experiments (Ashman et al.,
1988, 1989) used a simple Regge motivated extrapolation
{g1 ∼ constant} to evaluate the first moment sum-rules.
More recent measurements quoted in the literature fre-
quently use the technique of performing next-to-leading-
order QCD motivated fits to the g1 data, evolving the
data points all to the same value of Q2 and then extrapo-
lating these fits to x = 0. Values extracted from these fits

using the “MS scheme” include g
(0)
A = 0.23± 0.04± 0.06

(SLAC experiment E155 atQ2 = 5GeV2 (Anthony et al.,

2000)), g
(0)
A = 0.19 ± 0.05 ± 0.04 (SMC at Q2 = 1GeV2

(Adeva et al., 1998b)), and g
(0)
A = 0.29± 0.10 (the mean

value at Q2 = 4GeV2 obtained in Blümlein and Böttcher
(2002)).

Note that polarized deep inelastic scattering experi-
ments measure g1 between some small but finite value
xmin and an upper value xmax which is close to one. As
we decrease xmin → 0 we measure the first moment

Γ ≡ lim
xmin→0

∫ 1

xmin

dx g1(x,Q
2). (60)

Polarized deep inelastic experiments cannot, even in prin-
ciple, measure at x = 0 with finite Q2. They miss any
possible δ(x) terms which might exist in g1 at large Q2.
That is, they miss any potential (leading twist) fixed pole
correction to the deep inelastic spin sum rules.

Measurements of g1 could be extended to smaller x
with a future polarized ep collider. The low x be-
haviour of g1 by itself is an interesting topic. Small x
measurements, besides reducing the error on the first
moment (and gluon polarization, ∆g, in the proton –
see Section IX.E below), would provide valuable in-
formation about Regge and QCD dynamics at low x,
where the shape of g1 is particularly sensitive to the
different theoretical inputs discussed in the literature:
e.g. (αs ln2 1

x)k resummation and DGLAP evolution

(Kwiecinski and Ziaja, 1999), possible Q2 independent
Regge intercepts (Cudell et al., 1999), and the non-
perturbative “confinement physics” to hard (perturba-
tive QCD) scale transition. Does the colour glass con-
densate of small x physics (Iancu et al., 2002) carry net
spin polarization ? We refer to Ziaja (Ziaja, 2003) for a
recent discussion of perturbative QCD predictions for the
small x behaviour of g1 in deep inelastic scattering. In
the conventional picture based on QCD evolution and no
separate hard pomeron trajectory much larger changes in
the effective intercepts which describe the shape of the
structure functions at small Bjorken x are expected in
g1 than in the unpolarized structure function F2 so far
studied at HERA as one increases Q2 through the tran-
sition region from photoproduction to hard (deep inelas-
tic) values of Q2 (Bass and De Roeck, 2001). It will be
fascinating to study this physics in future experiments,
perhaps using a future polarized ep collider.

C. νp elastic scattering

Neutrino proton elastic scattering measures the pro-
ton’s weak axial charge g(Z)

A through elastic Z0 exchange.
Because of anomaly cancellation in the Standard Model
the weak neutral current couples to the combination
u− d+ c− s+ t− b, viz.

JZ
µ5 =

1

2

{ ∑

q=u,c,t

−
∑

q=d,s,b

}
q̄γµγ5q. (61)
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It measures the combination

2g(Z)

A =
(
∆u− ∆d− ∆s

)
+
(
∆c− ∆b+ ∆t

)
. (62)

Heavy quark renormalization group arguments can be
used to calculate the heavy t, b and c quark contribu-
tions to g(Z)

A both at leading-order (Chetyrkin and Kühn,
1993; Collins et al., 1978; Kaplan and Manohar, 1988)
and at next-to-leading-order (NLO) (Bass et al., 2002).
Working to NLO it is necessary to introduce “matching
functions” (Bass et al., 2003) to maintain renormaliza-
tion group invariance through-out. The result is:

2g(Z)

A =
(
∆u− ∆d− ∆s

)
inv

+ H
(
∆u+ ∆d+ ∆s

)
inv

+ O(m−1
t,b,c)

(63)

where H is a polynomial in the running couplings α̃h,

H =
6

23π

(
α̃b − α̃t

){
1 +

125663

82800π
α̃b +

6167

3312π
α̃t − 22

75π
α̃c

}

− 6

27π
α̃c − 181

648π2
α̃2

c +O
(
α̃3

t,b,c

)
.

(64)

Here (∆q)inv denotes the scale-invariant version of ∆q

which are obtained from linear combinations of g
(3)
A , g

(8)
A

and g
(0)
A |pDIS and α̃h denotes Witten’s renormalization-

group-invariant running couplings for heavy quark
physics (Witten, 1976). Taking α̃t = 0.1, α̃b = 0.2 and
α̃c = 0.35 in (64), one finds a small heavy-quark correc-
tion factor H = −0.02, with leading-order terms domi-
nant. The factor

(
α̃b − α̃t

)
ensures that all contributions

from b and t quarks cancel for mt = mb (as they should).
Modulo the small heavy-quark corrections quoted

above, a precision measurement of g
(Z)
A , together with

g
(3)
A and g

(8)
A , would provide a weak interaction deter-

mination of (∆s)inv, complementary to the deep inelas-
tic measurement of “∆s” in Eq.(2). The singlet axial
charge in principle measurable in νp elastic scattering
is independent of any assumptions about the presence
or absence of a subtraction at infinity correction to the
Ellis-Jaffe deep inelastic first moment of g1, the x ∼ 0
behaviour of g1 or SU(3) flavour breaking. Modulo any
“subtraction at infinity” correction to the first moment
of g1, one obtains a rigorous sum-rule relating deep in-
elastic scattering in the Bjorken region of high-energy
and high-momentum-transfer to three independent, low-
energy measurements in weak interaction physics: the
neutron and hyperon beta decays plus νp elastic scatter-
ing.

A precision measurement of the Z0 axial coupling to
the proton is therefore of very high priority. Ideas are be-
ing discussed for a dedicated experiment (Tayloe, 2002).
Key issues are the ability to measure close to the elastic
point and a very low duty factor (∼ 10−5) neutrino beam
to control backgrounds, e.g. from cosmic rays.

The experiment E734 at BNL made the first attempt to
measure ∆s in νp and νp elastic scattering (Ahrens et al.,

1987). This experiment extracted differential cross-
sctions dσ/dQ2 in the range 0.4 < Q2 < 1.1GeV2. Ex-

trapolating the axial form factor (1− 2∆s|inv/g
(3)
A )/(1 +

Q2/M2
A)2 to the elastic limit they obtained the value

∆s = −0.15 ± 0.09 taking the mass parameter in the
dipole form factor to be MA = 1.032 ± 0.036GeV. How-
ever, the data is also consistent with ∆s = 0 if one takes
the mass parameter to be MA = 1.06±0.05GeV which is
consistent with the world average and therefore equally
valid as a solution. That is, there is a strong correlation
between the value of ∆s and the dipole mass parameter
MA used in the analysis which prevents an unambigu-
ous extraction of ∆s from the E734 data (Garvey et al.,
1993). A new dedicated precision experiment is required.

The neutral-current axial-charge g
(Z)
A could also be

measured through parity violation in light atoms
(Alberico et al., 2002; Bruss et al., 1998, 1999;
Campbell et al., 1989; Fortson and Lewis, 1984;
Khriplovich, 1991; Missimer and Simons, 1985).

D. The Burkhardt-Cottingham sum rule

The Burkhardt-Cottingham sum rule
(Burkhardt and Cottingham, 1970) reads:

∫ ∞

Q2/2M

dνG2(Q
2, ν) =

2M3

Q2

∫ 1

0

dxg2 = 0, ∀Q2. (65)

For deep inelastic scattering, this sum rule is derived by
assuming that the moment formula (49) can be analyt-
ically continued to n = 0. In general, the Burkhardt-
Cottingham sum rule is derived by assuming no α ≥ 0
singularity in G2 (or, equivalently, no 1

x or more sin-
gular small behaviour in g2) and no “subtraction at in-
finity” (from an α = J = 0 fixed pole in the real
part of G2) (Jaffe, 1990). The most precise measure-
ments of g2 to date in polarized deep inelastic scatter-
ing come from the SLAC E-155 and E-143 experiments,

which report
∫ 0.8

0.02
dx gp

2 = −0.042 ± 0.008 for the pro-

ton and
∫ 0.8

0.02 dx g
d
2 = −0.006± 0.011 for the deuteron at

Q2 = 5GeV2 (Anthony et al., 2003). New, even more ac-
curate, measurements of g2 (for the neutron using a 3He
target) from Jefferson Laboratory (Amarian et al., 2004)
for Q2 between 0.1 and 0.9 GeV2 are consistent with the
sum rule. Further measurements to test the Burkhardt-
Cottingham sum rule would be most valuable, particu-
larly given the SLAC proton result quoted above.

The formula (49) indicates that g2 can be written as
the sum

g2 = gWW
2 (x) + g2(x) (66)

of a twist-two term (Wandzura and Wilczek, 1977), de-
noted gWW

2

gWW
2 = −g1(x) +

∫ 1

x

dy

y
g1(y) (67)
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FIG. 5 The Q2 averaged measured of xg2 (SLAC data)
compared with the twist-two Wandzura-Wilczek contribu-
tion gWW

2 term (solid line) and several quark model calcula-
tions. Figure from (Anthony et al., 2003).

and a second contribution ḡ2 which is the sum of a higher-
twist (twist 3) contribution ξ(x,Q2) and a “transversity”
term hT (x,Q2) which is suppressed by the ratio of the
quark to target nucleon masses and therefore negligible
for light u and d quarks

g2(x,Q
2) = −

∫ 1

x

dy

y

∂

∂y

(
mq

M
hT (y,Q2) + ξ(y,Q2)

)
.

(68)
The first moment of the twist 2 contribution gWW

2 van-
ishes through integrating the convolution formula (67). If
one drops the “transversity” contribution from the for-
malism (being proportional to the light quark mass), one
obtains the equation

d̃2(Q
2) = 3

∫ 1

0

dxx2

[
g2(x,Q

2) − gWW
2 (x,Q2)

]
(69)

for the leading twist 3 matrix element in Eq.(49). The
values extracted from dedicated SLAC measurements are
dp
2 = 0.0032 ± 0.0017 for the proton and dn

2 = 0.0079 ±
0.0048 for the neutron – that is, consistent with zero
(no twist-3) at two standard deviations (Anthony et al.,
2003). These twist 3 matrix elements are related in part
to the response of the collective colour electric and mag-
netic fields to the spin of the nucleon. Recent analyses
attempt to extract the twist-four corrections to g1. The
results and the gluon field polarizabilities are small and
consistent with zero (Deur et al., 2004).

E. The Gerasimov-Drell-Hearn sum rule

The Gerasimov-Drell-Hearn (GDH) sum-rule
(Drell and Hearn, 1966; Gerasimov, 1965) for spin
dependent photoproduction relates the difference of the
two cross-sections for the absorption of a real photon
with spin polarized anti-parallel, σ 1

2
, and parallel, σ 3

2

, to the target spin to the square of the anomalous
magnetic moment of the target. The GDH sum rule
reads:

∫ ∞

threshold

dν

ν
(σ 1

2
− σ 3

2
) =

8π2α

M2

∫ ∞

threshold

dν

ν
G1

= −2π2α

M2
κ2 (70)

where κ is the anomalous magnetic moment. The sum
rule follows from the very general principles of causality,
unitarity, Lorentz and electromagnetic gauge invariance
and one assumption: that the g1 spin structure function
satisfies an unsubtracted dispersion relation. Modulo the
no-subtraction hypothesis, the Gerasimov-Drell-Hearn
sum-rule is valid for a target of arbitrary spin S, whether
elementary or composite (Brodsky and Primack, 1969)
– for reviews see Bass (1997) and Drechsel and Tiator
(2004).

The GDH sum-rule is derived by setting ν = 0 in the
dispersion relation for A1, Eq.(38). For small photon
energy ν → 0

A1(0, ν) = −1

2
κ2 + γ̃ν2 +O(ν4). (71)

Here γN = α
M2 γ̃ is the spin polarizability which mea-

sures the stiffness of the nucleon spin against electromag-
netic induced deformations relative to the axis defined
by the nucleon’s spin. This low-energy theorem follows
from Lorentz invariance and electromagnetic gauge in-
variance (plus the existence of a finite mass gap between
the ground state and continuum contributions to for-
ward Compton scattering) (Brodsky and Primack, 1969;
Gell-Mann and Goldberger, 1954; Low, 1954).

The integral in Eq.(70) converges for each of the lead-
ing Regge contributions (discussed in Section II.B). If
the sum rule were observed to fail (with a finite integral)
the interpretation would be a “subtraction at infinity”
induced by a J = 1 fixed pole in the real part of the spin
amplitude A1 (Abarbanel and Goldberger, 1968).

Present experiments at ELSA and MAMI are aimed at
measuring the GDH integrand through the range of in-
cident photon energies Eγ = 0.14 - 0.8 GeV (MAMI)
(Ahrens et al., 2000, 2001, 2002) and 0.7 - 3.1 GeV
(ELSA) (Dutz et al., 2003). The inclusive cross-section
for the proton target σ 3

2
− σ 1

2
is shown in Fig. 6. The

presently analysed GDH integral on the proton is shown
in Fig. 7 and is dominated by the ∆ resonance con-
tribution. (The contribution to the sum-rule from the
unmeasured region close to threshold is estimated from
the MAID model (Drechsel et al., 2003).) The com-
bined data from the ELSA-MAMI experiments suggest
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that the contribution to the GDH integral for a pro-
ton target from energies ν < 3GeV exceeds the total
sum rule prediction (-204.5µb) by about 5-10% (Helbing,
2002). Phenomenological estimates suggest that about
+25±10µb of the sum rule may reside at higher energies
(Bass and Brisudova, 1999; Bianchi and Thomas, 1999)
and that this high energy contribution is predominantly
in the isovector channel. (It should be noted, however,
that any 10% fixed pole correction would be competi-
tive with this high energy contribution within the errors.)
Further measurements, including at higher energy, would
be valuable. Preliminary data on the neutron has just
been released from MAMI and ELSA (Helbing, 2004).
This data, if confirmed, suggests that the neutron GDH
integal, if it indeed obeys the GDH sum-rule, will require
a large (mainly isovector) contribution (perhaps 45µb)
from photon energies Eγ greater than about 1800 MeV.

With the caution that these data are still preliminary, it
is interesting to note that, just like the measured g1 at
deep inelastic Q2, the high-energy part of the spin de-
pendent cross-section σ 1

2
− σ 3

2
at Q2 = 0 seems to be

largely isovector prompting the question whether there
is some physics conspiracy to suppress the singlet term.
It should be noted however that perturbative QCD mo-
tivated fits to g1 data with a positive polarized gluon
distribution (and no node in it) predict that g1 should
develop a strong negative contribution at x < 0.0001 at
deep inelastic Q2 – see e.g. De Roeck et al. (1999) and
references therein.

In addition to the GDH sum-rule, one also finds a sec-
ond sum-rule for the nucleon’s spin polarizability. This
spin polarizability sum-rule is derived by taking the sec-
ond derivative of A1(Q

2, ν) in the dispersion relation (38)
and evaluating the resulting expression at ν = 0, viz.
∂2

∂ν2A1(Q
2, ν)|ν=0. One finds

∫ ∞

0

dν′

ν′3

(
σ 1

2
− σ 3

2

)
(ν′) = 4π2 γN . (72)

In comparison with the GDH sum-rule the relevant in-
formation is now concentrated more on the low energy
side because of the 1/ν′3 weighting factor under the in-
tegral. Main contributions come from the ∆(1232) reso-
nance and the low energy pion photoproduction contin-
uum described by the electric dipole amplitude E0+. The
value extracted from MAMI data (Drechsel et al., 2003)

γp = (−1.01 ± 0.13).10−4 fm4 (73)

is within the range of predictions of chiral perturbation
theory.

Further experiments to test the GDH sum-rule and
to measure the σ 1

2
− σ 3

2
at and close to Q2 = 0 are

being carried out at Jefferson Laboratory, GRAAL at
Grenoble, LEGS at BNL, and SPRING-8 in Japan.

We note two interesting properties of the GDH sum
rule.

First, we write the anomalous magnetic moment κ as
the sum of its isovector κV and isoscalar κS contribu-
tions, viz. κN = κS +τ3κV . One then obtains the isospin
dependent expressions:

(GDH)I=0 = (GDH)V V + (GDH)SS = −2π2α

m2
(κ2

V + κ2
S)

(GDH)I=1 = (GDH)V S = −2π2α

m2
2κV κS .

(74)

The physical values of the proton and nucleon anoma-
lous magnetic moments κp = 1.79 and κn = −1.91
correspond to κS = −0.06 and κV = +1.85. Since
κS/κV ≃ − 1

30 , it follows that (GDH)SS is negligible com-
pared to (GDH)V V . That is, to good approximation,
the isoscalar sum-rule (GDH)I=0 measures the isovector
anomalous magnetic moment κV . Given this isoscalar
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measurement, the isovector sum-rule (GDH)I=1 then
measures the isoscalar anomalous magnetic moment κS .

Second, the anomalous magnetic moment is measured
in the matrix element of the vector current. Furry’s the-
orem tells us that the real-photon GDH integral for a
gluon or a photon target vanishes. Indeed, this is the
reason that the first moment of the g1 spin structure
function for a real polarized photon target vanishes to

all orders and at every twist:
∫ 1

0
dx gγ

1 (x,Q2) indepen-

dent of the virtuality Q2 of the second photon that it
is probed with (Bass et al., 1998). Assuming no fixed
pole subtraction at infinity correction to the GDH sum
rule, this result implies that the two non-perturbative
gluon exchange contribution to σ 1

2
− σ 3

2
which behaves

as ln ν/ν in the high energy Regge limit has a node at
some value ν = ν0 so that it does not contribute to the
GDH integral. There is no axial anomaly contribution
to the anomalous magnetic moment and hence no axial
anomaly contribution to the GDH sum-rule.

F. The transition region

FIG. 8 Data from JLab (CLAS) and SLAC on the low

Q2 behaviour of
∫ 1

0
dxgp

1 compared to various theoretical
models interpolating the scaling and photoproduction lim-
its (Fatemi et al., 2003).

Several experiments have explored the transition re-
gion between polarized photoproduction (the physics of
the GDH sum-rule) and polarized deep inelastic scatter-

ing (the physics of the Bjorken sum-rule and g
(0)
A through

the Ellis-Jaffe moment).

The Q2 dependent quantity (Anselmino et al., 1989)

Γ(Q2) ≡ I(Q2) =

∫ ∞

Q2

2M

dν

ν
G1(ν,Q

2)

=
2M2

Q2

∫ 1

0

dxg1(x,Q
2) (75)

interpolates between the two limits with I(0) = − 1
4κ

2
N

implied by the GDH sum rule. Measurements of∫ 1

0
dxgp

1 = Q2

2M2 I(Q
2) are shown in Fig. 8. Note the nega-

tive slope predicted at Q2 = 0 by the GDH sum rule and
the sign change around Q2 ∼ 0.3GeV2. The shape of the
curve is driven predominantly by the role of the ∆ reso-
nance and the 1/Q2 pole in Eq.(75). Fig. 8 shows also the
predictions of various models (Burkert and Ioffe, 1994;
Soffer and Teryaev, 1993) which try to describe the in-
termediate Q2 range through a combination of resonance
physics and vector-meson dominance at low Q2 and scal-
ing parton physics at DISQ2. Chiral perturbation theory
(Bernard et al., 2003) may describe the behaviour of this
“generalized GDH integral” close to threshold – see the
shaded band in Fig. 8.

In the model of Ioffe and collaborators
(Anselmino et al., 1989; Burkert and Ioffe, 1994)
the integral at low to intermediate Q2 for the inelastic
part of (σA − σP ) is given as the sum of a contribution
from resonance production, denoted Ires(Q2), which
has a strong Q2 dependence for small Q2 and then
drops rapidly with Q2, and a non-resonant vector-meson
dominance contribution which they took as the sum of
a monopole and a dipole term, viz.

I(Q2) = Ires(Q2) + 2M2Γas

(
1

Q2 + µ2
− Cµ2

(Q2 + µ2)2

)
.

(76)
Here Γas is taken as

Γas =

∫ 1

0

dxg1(x,∞) (77)

and

C = 1 +
1

2

µ2

M2

1

Γas

(1

4
κ2 + Ires(0)

)
(78)

is the vector-meson dominance term. The mass parame-
ter µ is identified with rho meson mass, µ2 ≃ m2

ρ.

IV. PARTONS AND SPIN STRUCTURE FUNCTIONS

We now return to g1 in the scaling regime of polarized
deep inelastic scattering.
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A. The QCD parton model

As noted in Section II.A above, in the (pre-QCD) par-
ton model g1 is written as

g1(x) =
1

2

∑

q

e2q∆q(x) (79)

where eq denotes the quark charge and ∆q(x) is the po-
larized quark distribution.

In QCD we have to consider the effects of gluon radi-
ation and (renormalization group) mixing of the flavour-
singlet quark distribution with the polarized gluon dis-
tribution of the proton. The parton model description
of polarized deep inelastic scattering involves writing the
deep inelastic structure functions as the sum over the con-
volution of “soft” quark and gluon parton distributions
with “hard” photon-parton scattering coefficients:

g1(x) =

{
1

12
(∆u− ∆d) +

1

36
(∆u + ∆d− 2∆s)

}
⊗ Cq

ns

+
1

9

{
(∆u+ ∆d+ ∆s) ⊗ Cq

s + f∆g ⊗ Cg

}
.

(80)

Here ∆q(x) and ∆g(x) denote the polarized quark and
gluon parton distributions, Cq(z) and Cg(z) denote the
corresponding hard scattering coefficients, and f is the
number of quark flavours liberated into the final state
(f = 3 below the charm production threshold). The
parton distributions contain all the target dependent in-
formation and describe a flux of quark and gluon par-
tons into the (target independent) interaction between
the hard photon and the parton which is described by
the coefficients and which is calculable using perturba-
tive QCD. The perturbative coefficients are independent
of infra-red mass singularities in the photon-parton colli-
sion which are absorbed into the soft parton distributions
(and softened by confinement related physics).

The separation of g1 into “hard” and “soft” is not
unique and depends on the choice of “factorization
scheme”. For example, one might use a kinematic cut-off
on the partons’ transverse momentum squared (k2

t > λ2)
to define the factorization scheme and thus separate the
hard and soft parts of the phase space for the photon-
parton collision. The cut-off λ2 is called the factoriza-
tion scale. The coefficients have the perturbative ex-
pansion Cq = δ(1 − x) + αs

2πf
q(x,Q2/λ2) and Cg =

αs

2πf
g(x,Q2/λ2) where the functions f q and fg have at

most a ln(1 − x) singularity when x → 1 (Ratcliffe,
1983). The deep inelastic structure functions are depen-
dent on Q2 and independent of the factorization scale λ2

and the “scheme” used to separate the γ∗-parton cross-
section into “hard” and “soft” contributions. Examples
of different “schemes” one might use include using mod-
ified minimal subtraction (MS) (Bodwin and Qiu, 1990;
’t Hooft and Veltman, 1972) to regulate the mass singu-
larities which arise in scattering from massless partons,

and cut-offs on other kinematic variables such as the in-
variant mass squared or the virtuality of the struck quark.
Other schemes which have widely been used in the liter-
ature and analysis of polarized deep inelastic scattering
data are the “AB” (Ball et al., 1996) and CI” (chiral in-
variant) (Cheng, 1996) or “JET” (Leader et al., 1998)
schemes.

If the same “scheme” is applied consistently to all hard
processes then the factorization theorem asserts that the
parton distributions that one extracts from experiments
should be process independent (Collins, 1993a). In other
words, the same polarized quark and gluon distributions
should be obtained from future experiments involving po-
larized hard QCD processes in polarized proton proton
collisions (e.g. at RHIC) and polarized deep inelastic
scattering experiments. The factorization theorem for
unpolarized hard processes has been successfully tested
in a large number of experiments involving different re-
actions at various laboratories. Tests of the polarized
version await future independent measurements of the
polarized gluon and sea-quark distributions from a vari-
ety of different hard scattering processes with polarized
beams.

B. Light-cone correlation functions

The (spin-dependent) parton distributions may also
be defined via the operator product expansion. For g1,
this means that the odd moments of the polarized quark
and gluon distributions project out the target matrix ele-
ments of the renormalized, spin-odd, composite operators
which appear in the operator product expansion, viz.

2Ms+(p+)2n

∫ 1

0

dx x2n∆q(x, µ2)

= 〈p, s|
[
q(0)γ+γ5(iD+)2nq(0)

]

µ2

|p, s〉

(81)

2Ms+(p+)2n

∫ 1

0

dx x2n∆g(x, µ2)

= 〈p, s|
[
Tr G+α(0)(iD+)2n−1G̃α

+(0)

]

µ2

|p, s〉

(n ≥ 1).

(82)

The association of ∆q(x, µ2) with quarks and ∆g(x, µ2)
with gluons follows when we evaluate the target matrix
elements in Eqs.(81) and (82) in the light-cone gauge,
where D+ → ∂+ and the explicit dependence of D+ on
the gluon field drops out. The operator product expan-
sion involves writing the product of electromagnetic cur-
rents Jµ(z)Jν(0) in Eq.(11) as the expansion over gauge
invariantly renormalized, local, composite quark and glu-
onic operators at lightlike separation z2 → 0 – the realm
of deep inelastic scattering (Muta, 1998). (The subscript
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µ2 on the operators in Eq.(82) emphasises the depen-
dence on the renormalization scale.) 2

Mathematically, the relation between the parton dis-
tributions and the operator product expansion is given
in terms of light-cone correlation functions of point split
operator matrix elements along the light-cone.

Define

ψ± = P±ψ (83)

where

P± =
1

2
(1 ± α3) =

1

2
γ±γ∓. (84)

The polarized quark and antiquark distributions are
given by

∆ψ(x) =
1

2
√

2π

∫
dξ−e−ixMξ−/

√
2

〈p, s|(ψ+R)†(ξ−)ψ+R(0) − (ψ+L)†(ξ−)ψ+L(0)|p, s〉

∆ψ̄(x) =
1

2
√

2π

∫
dξ−e−ixMξ−/

√
2

〈p, s|ψ+L(ξ−)(ψ+L)†(0) − ψ+R(ξ−)(ψ+R)†(0)|p, s〉.
(85)

In this notation ∆q = ∆ψ+∆ψ̄. The non-local operator
in the correlation function is rendered gauge invariant
through a path ordered exponential which simplifies to
unity in the light-cone gauge A+ = 0. Taking the mo-
ments of these distributions reproduces the results of the
operator product expansion in Eq. (48). 3 The light-cone
correlation function for the polarized gluon distribution
is

x∆g(x) =
i

2
√

2Mπ

∫
dξ− e−ixξ−M/

√
2

〈p, s|G+ν(ξ−)G̃ν
+(0) −G+ν(0)G̃ν

+(ξ−)|p, s〉.
(87)

2 Note that the parton distributions defined through the operator
product expansion include the effect of renormalization effects
such as the axial anomaly (and the trace anomaly for the spin-
independent distributions which appear in F1 and F2) in addition
to absorbing the mass singularities in photon-parton scattering.

3 Some care has to be taken regarding renormalization of the light-
cone correlation functions. The bare correlation function from
which we project out moments as local operators is ultra-violet
divergent. Llewellyn Smith (1988) proposed a solution of this
problem by defining the renormalized light cone correlation func-
tion as a series expansion in the proton matrix elements of gauge
invariant local operators. For the polarized quark distribution
this becomes:

〈ψ(z−)γ+γ5ψ(0)〉 =
∑

n

(−z−)n

n!
〈
[
ψγ+γ5(D+)nψ

]
(0)〉. (86)

In the light-cone gauge (A+ = 0) one finds G+ν
a =

∂+Aν
a − ∂νA+

a = ∂+Aν
a so that

G+νG̃ +
ν = G+

RG−L −G+
LG−R = G+

RG
+R −G+

LG
+L.
(88)

Thus ∆g(x) measures the distribution of gluon polariza-
tion in the nucleon. One can evaluate the first moment of
∆g(x) from its light-cone correlation function. One first
assumes that

lim
x→0+

x∆g(x) = 0. (89)

In A+ = 0 gauge the first moment becomes

∫ 1

0

dx∆g(x) =

1√
2M

[
〈Aν(ξ−)G̃ +

ν (0)〉|ξ−→∞ − 〈Aν(0)G̃ +
ν (0)〉

]

(90)

– that is, the sum of the forward matrix element of the
gluonic Chern Simons current K+ plus a surface term
(Manohar, 1990) which may or may not vanish in QCD.

V. FIXED POLES

Fixed poles are exchanges in Regge phenomenology
with no t dependence: the trajectories are described
by J = α(t) = 0 or 1 for all t (Abarbanel et al.,
1967; Brodsky et al., 1972; Landshoff and Polkinghorne,
1972). For example, for fixed Q2 a t−independent real
constant term in the spin amplitude A1 would correspond
to a J = 1 fixed pole. Fixed poles are excluded in hadron-
hadron scattering by unitarity but are not excluded from
Compton amplitudes (or parton distribution functions)
because these are calculated only to lowest order in the
current-hadron coupling. Indeed, there are two famous
examples where fixed poles are required: (by current al-
gebra) in the Adler sum rule for W-boson nucleon scatter-
ing, and to reproduce the Schwinger term sum rule for the
longitudinal structure function measured in unpolarized
deep inelastic ep scattering. We review the derivation of
these fixed pole contributions, and then discuss poten-
tial fixed pole corrections to the Burkhardt-Cottingham,
g1 and Gerasimov-Drell-Hearn sum-rules. 4 Fixed poles
in the real part of the forward Compton amplitude have
the potential to induce “subtraction at infinity” correc-
tions to sum rules for photon nucleon (or lepton nucleon)
scattering. For example, a ν independent term in the
real part of A1 would induce a subtraction constant cor-
rection to the spin sum rule for the first moment of g1.

4 We refer to Efremov and Schweitzer (2003) for a recent discus-
sion of an “x = 0” fixed pole contribution to the twist 3, chiral-
odd structure function e(x).
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Bjorken scaling at largeQ2 constrains the Q2 dependence
of the residue of any fixed pole in the real of the for-
ward Compton amplitide (e.g. β1(Q

2) and β2(Q
2) in the

dispersion relations (41) ). To be consistent with scal-
ing these residues must decay as or faster than 1/Q2 as
Q2 → ∞. That is, they must be nonpolynomial in Q2.

A. Adler sum rule

The first example we consider is the Adler sum rule for
W-boson nucleon scattering (Adler, 1966):

∫ +∞

Q2/2M

dν

[
W ν̄p

2 (ν,Q2) −W νp
2 (ν,Q2)

]

=

∫ 1

0

dx

x

[
F ν̄p

2 (x,Q2) − F νp
2 (x,Q2)

]

=
4 − 2 cos2 θc (BCT)
2 (ACT).

(91)

Here θc is the Cabibbo angle, and BCT and ACT refer
to below and above the charm production threshold.

The Adler sum rule is derived from current algebra.
The right hand side of the sum rule is the coefficient of
a J = 1 fixed pole term

i

π
fabc Fc

[
(pµqν + qµpν) −Mνgµν

]
/Q2 (92)

in the imaginary part of the forward Compton amplitude
for W-boson nucleon scattering (Heimann et al., 1972).
This fixed pole term is required by the commutation re-
lations between the charge raising and lowering weak cur-
rents

qµT
µν
ab = − 1

π

∫
d4x eiq.x 〈p, s|

[
J0

a(x), Jν
b (0)

]
|p, s〉δ(x0)

= − i

π
fabc〈ps|Jν

c (0)|ps〉. (93)

Here Fc is a generalized form factor at zero momentum
transfer:

〈p, s|Jν
c (0)|p, s〉 ≡ pνFc. (94)

The fixed pole term appears in lowest order perturba-
tion theory, and is not renormalized because it is a con-
sequence of the charge algebra. The Adler sum rule is
protected against radiative QCD corrections

B. Schwinger term sum rule

Our second example is the Schwinger term sum rule
(Broadhurst et al., 1973) which relates the logarithmic
integral in ω (or Bjorken x) of the longitudinal structure
function FL(ω,Q2) (FL = 1

2ωF2−F1) measured in unpo-
larized deep inelastic scattering to the target matrix ele-
ment of the operator Schwinger term S defined through

the equal-time commutator of the electromagnetic charge
and current densities

〈p, s|
[
J0(~y, 0), Ji(0)

]
|p, s〉 = i ∂i δ

3(~y) S. (95)

The Schwinger term sum rule reads

S = lim
Q2→∞

[
4

∫ ∞

1

dω

ω
F̃L(ω,Q2)−4

∑

α>0

γ(α,Q2)/α−C(q2)

]
.

(96)
Here C(Q2) is the nonpolynomial residue of any J = 0
fixed pole contribution in the real part of T2 and

F̃L(ω,Q2) = FL(ω,Q2) −
∑

α≥0

γ(α,Q2)ωα. (97)

The integral in Eq.(96) is convergent because F̃L(ω,Q2)
is defined with all Regge contributions with effective
intecept greater than or equal to zero removed from
FL(Q2, ω). The Schwinger term S vanishes in vector
gauge theories like QCD.

Since FL(ω,Q2) is positive definite, it follows that
QCD possesses the required non-vanishing J = 0 fixed
pole in the real part of T2.

C. Burkhardt-Cottingham sum rule

The third example, and the first in connection with
spin, is the Burkhardt-Cottingham sum rule for the first
moment of g2 (Burkhardt and Cottingham, 1970):

∫ ∞

Q2/2M

dν G2(Q
2, ν) =

2M3

Q2

∫ 1

0

dxg2 = 0. (98)

Suppose that future experiments find that the sum rule
is violated and that the integral is finite. The conclusion
(Jaffe, 1990) would be a J = 0 fixed pole with nonpoly-
nomial residue in the real part of A2. To see this work
at fixed Q2 and assume that all Regge-like singularities
contributing to A2(ν,Q

2) have intercept less than zero so
that

A2(ν,Q
2) ∼ ν−1−ǫ (99)

as ν → ∞ for some ǫ < 0. Then the large ν behaviour
of A2 is obtained by taking ν → ∞ under the ν′ integral
giving

A2(Q
2, ν) ∼ − 2

πν

∫ ∞

Q2/2M

dν′ ImA2(Q
2, ν′) (100)

which contradicts the assumed behaviour unless the inte-
gral vanishes; hence the sum rule. If there is an α(0) = 0
fixed pole in the real part of A2 the fixed pole will not
contribute to ImA2 and therefore not spoil the conver-
gence of the integral.

One finds

β2(Q
2) ∼ − 2

πM

∫ ∞

Q2/2M

dν′ ImA2(Q
2, ν′) (101)

for the residue of any J = 0 fixed pole coupling to
A2(Q

2, ν).
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D. g1 spin sum rules

Scaling requires that any fixed pole correction to the
Ellis-Jaffe g1 sum rule must have nonpolynomial residue.
Through Eq.(41), the fixed pole coefficient β1(Q

2) must
decay as or faster than O(1/Q2) as Q2 → ∞. The co-
efficient is further constrained by the requirement that
G1 contains no kinematic singularities (for example at
Q2 = 0). In Section VI.C we will identify a potential
leading-twist topological x = 0 contribution to the first
moment of g1 through analysis of the axial anomaly con-

tribution to g
(0)
A . This zero-mode topological contribu-

tion (if finite) generates a leading twist fixed pole correc-

tion to the flavour-singlet part of
∫ 1

0
dxg1. If present, this

fixed pole will also violate the Gerasimov-Drell-Hearn
sum rule (since the two sum rules are derived from A1)
unless the underlying dynamics suppress the fixed pole’s
residue at Q2 = 0.

Note that any fixed pole correction to the Gerasimov-
Drell-Hearn sum rule is most probably a non-
perturbative effect. The sum rule (41) has been verified
to O(α2) for all 2 → 2 processes γa→ bc where a is either
a real lepton, quark, gluon or elementary Higgs target
(Altarelli et al., 1972; Brodsky and Schmidt, 1995), and
for electrons in QED to O(α3) (Dicus and Vega, 2001).

One could test for a fixed pole correction to the Ellis-
Jaffe moment through a precision measurement of the
flavour singlet axial charge from an independent pro-
cess where one is not sensitive to theoretical assumptions
about the presence or absence of a J = 1 fixed pole in
A1. Here the natural choice is elastic neutrino proton
scattering where the parity violating part of the cross-
section includes a direct weak interaction measurement
of the scale invariant flavour-singlet axial charge g

(0)
A |inv.

A further test could come from a precision measure-
ment of the Q2 dependence of the polarized gluon distri-
bution at next-to-next-to-leading order accuracy where
one becomes sensitive to any possible leading-twist sub-
traction constant – see below Eq.(125).

The subtraction constant fixed pole correction hypoth-
esis could also, in principle, be tested through measure-
ment of the real part of the spin dependent part of the
forward deeply virtual Compton amplitude. While this
measurement may seem extremely difficult at the present
time one should not forget that Bjorken believed when
writing his original Bjorken sum rule paper that the sum
rule would never be tested!

VI. THE AXIAL ANOMALY, GLUON TOPOLOGY AND
THE FLAVOUR SINGLET AXIAL CHARGE g

(0)
A

We next discuss the role of the axial anomaly in the

interpretation of g
(0)
A .

A. The axial anomaly

In QCD one has to consider the effects of renormal-
ization. The flavour singlet axial vector current JGI

µ5

in Eq.(53) satisfies the anomalous divergence equation
(Adler, 1969; Bell and Jackiw, 1969; Crewther, 1978)

∂µJGI
µ5 = 2f∂µKµ +

f∑

i=1

2imiq̄iγ5qi (102)

where

Kµ =
g2

32π2
ǫµνρσ

[
Aν

a

(
∂ρAσ

a − 1

3
gfabcA

ρ
bA

σ
c

)]
(103)

is the gluonic Chern-Simons current and the number of
light flavours f is 3. Here Aµ

a is the gluon field and

∂µKµ = g2

32π2GµνG̃
µν is the topological charge density.

Eq.(102) allows us to define a partially conserved current

JGI
µ5 = Jcon

µ5 + 2fKµ (104)

viz. ∂µJcon
µ5 =

∑f
i=1 2imiq̄iγ5qi.

When we make a gauge transformation U the gluon
field transforms as

Aµ → UAµU
−1 +

i

g
(∂µU)U−1 (105)

and the operator Kµ transforms as

Kµ → Kµ + i
g

8π2
ǫµναβ∂

ν

(
U †∂αUAβ

)

+
1

24π2
ǫµναβ

[
(U †∂νU)(U †∂αU)(U †∂βU)

]
.

(106)

(Partially) conserved currents are not renormalized. It
follows that Jcon

µ5 is renormalization scale invariant and

the scale dependence of JGI
µ5 associated with the factor

E(αs) is carried by Kµ. This is summarized in the equa-
tions:

Jµ5 = Z5 Jµ5

∣∣∣∣
bare

Kµ = Kµ|bare +
1

2f
(Z5 − 1)Jµ5

∣∣∣∣
bare

Jcon
µ5 = Jcon

µ5

∣∣∣∣
bare

(107)

where Z5 denotes the renormalization factor for Jµ5.
Gauge transformations shuffle a scale invariant operator
quantity between the two operators Jcon

µ5 and Kµ whilst

keeping JGI
µ5 invariant.

The nucleon matrix element of JGI
µ5 is

〈p, s|JGI
5µ |p′, s′〉 = 2M

[
s̃µGA(l2) + lµl.s̃GP (l2)

]
(108)
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where lµ = (p′ − p)µ and s̃µ = u(p,s)γµγ5u(p′,s′)/2M .

Since JGI
5µ does not couple to a massless Goldstone boson

it follows that GA(l2) and GP (l2) contain no massless
pole terms. The forward matrix element of JGI

5µ is well
defined and

g
(0)
A |inv = E(αs)GA(0). (109)

We would like to isolate the gluonic contribution to

GA(0) associated with Kµ and thus write g
(0)
A as the

sum of (measurable) “quark” and “gluonic” contribu-
tions. Here one has to be careful because of the gauge
dependence of the operator Kµ. To understand the glu-

onic contributions to g
(0)
A it is helpful to go back to the

deep inelastic cross-section in Section II.

B. The anomaly and the first moment of g1

We specialise to the target rest frame and let E denote
the energy of the incident charged lepton which is scat-
tered through an angle θ to emerge in the final state with
energy E′. Let ↑↓ denote the longitudinal polarization of
the beam and ⇑⇓ denote a longitudinally polarized pro-
ton target. The spin dependent part of the differential
cross-sections is:
(
d2σ ↑⇓
dΩdE′

− d2σ ↑⇑
dΩdE′

)

=
4α2E

′

Q2Eν

[
(E + E

′

cos θ) g1(x,Q
2) − 2xM g2(x,Q

2)

]

(110)

which is obtained from the product of the lepton and
hadron tensors:

d2σ

dΩdE′ =
α2

Q4

E′

E
LA

µν W
µν
A . (111)

Here the lepton tensor

LA
µν = 2iǫµναβk

αqβ (112)

describes the lepton-photon vertex and the hadronic ten-
sor

1

M
Wµν

A = iǫµνρσqρ

(
sσ

1

p.q
g1(x,Q

2)

+[p.qsσ − s.qpσ]
1

M2p.q
g2(x,Q

2)

)

(113)

describes the photon-nucleon interaction.
Deep inelastic scattering involves the Bjorken limit:

Q2 = −q2 and p.q = Mν both → ∞ with x = Q2

2Mν held
fixed. In terms of light-cone coordinates this corresponds
to taking q− → ∞ with q+ = −xp+ held finite. The
leading term in Wµν

A is obtained by taking the Lorentz

index of sσ as σ = +. (Other terms are suppressed by
powers of 1

q−
.)

If we wish to understand the first moment of g1 in
terms of the matrix elements of anomalous currents (Jcon

µ5

and Kµ), then we have to understand the forward matrix
element of K+ and its contribution to GA(0).

Here we are fortunate in that the parton model is for-
mulated in the light-cone gauge (A+ = 0) where the for-
ward matrix elements of K+ are invariant. In the light-
cone gauge the non-abelian three-gluon part of K+ van-
ishes. The forward matrix elements of K+ are then in-
variant under all residual gauge degrees of freedom. Fur-
thermore, in this gauge, K+ measures the gluonic “spin”
content of the polarized target (Jaffe, 1996; Manohar,
1990) – strictly speaking, up to the non-perturbative sur-
face term we find from integrating the light-cone corre-
lation function, Eq.(90). One finds

G
(A+=0)
A (0) =

∑

q

∆qcon − f
αs

2π
∆g (114)

where ∆qcon is measured by the partially conserved cur-
rent Jcon

+5 and −αs

2π ∆g is measured by K+. Positive gluon

polarization tends to reduce the value of g
(0)
A and offers a

possible source for OZI violation in g
(0)
A |inv. The connec-

tion between this more formal derivation and the QCD
parton model will be explored in Section VI.D below.
In perturbative QCD ∆qcon is identified with ∆qpartons

and ∆g is identified with ∆gpartons – see Section VI.D
below and (Altarelli and Ross, 1988; Bass et al., 1991;
Carlitz et al., 1988; Efremov and Teryaev, 1988).

C. Gluon topology, large gauge transformations and
connection to the axial U(1) problem

If we were to work only in the light-cone gauge we
might think that we have a complete parton model de-
scription of the first moment of g1. However, one is free
to work in any gauge including a covariant gauge where
the forward matrix elements of K+ are not necessarily
invariant under the residual gauge degrees of freedom
(Jaffe and Manohar, 1990). Understanding the interplay
between spin and gauge invariance leads to rich and in-
teresting physics possibilities.

We illustrate this by an example in covariant gauge.
The matrix elements of Kµ need to be specified with

respect to a specific gauge. In a covariant gauge we can
write

〈p, s|Kµ|p′, s′〉 = 2M

[
s̃µKA(l2) + lµl.s̃KP (l2)

]
(115)

where KP contains a massless Kogut-Susskind pole
(Kogut and Susskind, 1974). This massless pole is an
essential ingredient in the solution of the axial U(1) prob-
lem (Crewther, 1978) (the absence of any near massless
Goldstone boson in the singlet channel associated with
spontaneous axial U(1) symmetry breaking) and cancels
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with a corresponding massless pole term in (GP −KP ).
The Kogut Susskind pole is associated with the (unphys-
ical) massless boson that one expects to couple to Jcon

µ5

in the chiral limit and which is not seen in the physical
spectrum.

We next define gauge-invariant form-factors χg(l2) for
the topological charge density and χq(l2) for the quark
chiralities in the divergence of Jµ5:

2M l.s̃ χg(l2) = 〈p, s| g2

32π2
GµνG̃

µν |p′, s′〉

2M l.s̃ χq(l2) = 〈p, s|
f∑

i=1

2imiq̄iγ5qi|p′, s′〉. (116)

Working in a covariant gauge, we find

χg(l2) = KA(l2) + l2KP (l2) (117)

by contracting Eq.(116) with lµ. (Also, note the general

gauge invariant formula g
(0)
A = χq(0) + fχg(0).)

When we make a gauge transformation any change δgt
in KA(0) is compensated by a corresponding change in
the residue of the Kogut-Susskind pole in KP , viz.

δgt[KA(0)] + lim
l2→0

δgt[l
2KP (l2)] = 0. (118)

As emphasised above, the Kogut-Susskind pole corre-
sponds to the Goldstone boson associated with spon-
taneously broken UA(1) symmetry (Crewther, 1978).
There is no Kogut-Susskind pole in perturbative QCD.
It follows that the quantity which is shuffled between

the Jcon
+5 and K+ contributions to g

(0)
A is strictly non-

perturbative; it vanishes in perturbative QCD and is not
present in the QCD parton model.

The QCD vacuum is understood to be a Bloch super-
position of states characterized by different topological
winding number (Callan et al., 1976; Jackiw and Rebbi,
1976)

|vac, θ〉 =
∑

n

einθ |n〉 (119)

where the QCD θ angle is zero (experimentally less than
10−10) – see e.g. Quinn (2004).

One can show (Jaffe and Manohar, 1990) that the
forward matrix elements of Kµ are invariant under
“small” gauge transformations (which are topologically
deformable to the identity) but not invariant under
“large” gauge transformations which change the topolog-
ical winding number. Perturbative QCD involves only
“small” gauge transformations; “large” gauge transfor-
mations involve strictly non-perturbative physics. The
second term on the right hand side of Eq.(106) is a

total derivative; its matrix elements vanish in the for-
ward direction. The third term on the right hand
side of Eq.(106) is associated with the gluon topology
(Cronström and Mickelsson, 1983).

The topological winding number is determined by the
gluonic boundary conditions at “infinity” ( a large sur-
face with boundary which is spacelike with respect to
the positions zk of any operators or fields in the physical
problem) (Crewther, 1978). It is insensitive to local de-
formations of the gluon field Aµ(z) or of the gauge trans-
formation U(z). When we take the Fourier transform
to momentum space the topological structure induces a
light-cone zero-mode which can contribute to g1 only at
x = 0. Hence, we are led to consider the possibility that
there may be a term in g1 which is proportional to δ(x)
(Bass, 1998).

It remains an open question whether the net non-
perturbative quantity which is shuffled between KA(0)
and (GA −KA)(0) under “large” gauge transformations
is finite or not. If it is finite and, therefore, physical, then,
when we choose A+ = 0, this non-perturbative quantity
must be contained in some combination of the ∆qcon and
∆g in Eq.(114).

Previously, in Sections III and V, we found that a
J = 1 fixed pole in the real part of A1 in the forward
Compton amplitude could also induce a “δ(x) correction”
to the sum rule for the first moment of g1 through a sub-
traction at infinity in the dispersion relation (40). Both
the topological x = 0 term and the subtraction constant
Q2

2M2 β1(Q
2) (if finite) give real coefficients of 1

x terms in
Eq.(41). It seems reasonable therefore to conjecture that
the physics of gluon topology may induce a J = 1 fixed
pole correction to the Ellis-Jaffe sum rule.

Instantons provide an example how to generate topo-
logical x = 0 polarization (Bass, 1998). Quarks instan-
ton interactions flip chirality, thus connecting left and
right handed quarks. Whether instantons spontaneously
or explicitly break axial U(1) symmetry depends on the
role of zero modes in the quark instanton interaction and
how one should include non local structure in the local
anomalous Ward identity. Topological x = 0 polarization
is natural in theories of spontaneous axial U(1) symmetry
breaking by instantons (Crewther, 1978) where any in-

stanton induced suppression of g
(0)
A |pDIS is compensated

by a shift of flavour-singlet axial charge from quarks car-
rying finite momentum to a zero mode (x = 0). It is
not generated by mechanisms (’t Hooft, 1986) of explicit
U(1) symmetry breaking by instantons. Experimental
evidence for or against a “subtraction at infinity” correc-
tion to the Ellis-Jaffe sum rule would provide valuable
information about gluon topology and vital clues to the
nature of dynamical axial U(1) symmetry breaking in
QCD.
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D. Photon gluon fusion

We next consider the role of the axial anomaly in the QCD parton model and its relation to semi-inclusive mea-
surements of jets and high kt hadrons in polarized deep inelastic scattering.

Consider the polarized photon-gluon fusion process γ∗g → qq̄. We evaluate the g1 spin structure function for this
process as a function of the transverse momentum squared of the struck quark, k2

t , with respect to the photon-gluon
direction. We use q and p to denote the photon and gluon momenta and use the cut-off k2

t ≥ λ2 to separate the total
phase space into “hard” (k2

t ≥ λ2) and “soft” (k2
t < λ2) contributions. One finds (Bass et al., 1998):

g
(γ∗g)
1 |hard = −αs

2π

√
1 − 4(m2+λ2)

s

1 − 4x2P 2

Q2

[
(2x− 1)(1 − 2xP 2

Q2
)

{
1 − 1√

1 − 4(m2+λ2)
s

√
1 − 4x2P 2

Q2

ln

(1 +
√

1 − 4x2P 2

Q2

√
1 − 4(m2+λ2)

s

1 −
√

1 − 4x2P 2

Q2

√
1 − 4(m2+λ2)

s

)}

+(x− 1 +
xP 2

Q2
)

(
2m2(1 − 4x2P 2

Q2 ) − P 2x(2x− 1)(1 − 2xP 2

Q2 )
)

(m2 + λ2)(1 − 4x2P 2

Q2 ) − P 2x(x − 1 + xP 2

Q2 )

]

(120)

for each flavour of quark liberated into the final state. Here m is the quark mass, Q2 = −q2 is the virtuality of the

hard photon, P 2 = −p2 is the virtuality of the gluon target, x is the Bjorken variable (x = Q2

2p.q ) and s is the centre

of mass energy squared, s = (p+ q)2 = Q2
(

1−x
x

)
− P 2, for the photon-gluon collision.

When Q2 → ∞ the expression for g
(γ∗g)
1 |hard simplifies to the leading twist (=2) contribution:

g
(γ∗g)
1 |hard =

αs

2π

[
(2x− 1)

{
ln

1 − x

x
− 1 + ln

Q2

x(1 − x)P 2 + (m2 + λ2)

}
+ (1 − x)

2m2 − P 2x(2x − 1)

m2 + λ2 − P 2x(x − 1)

]
. (121)

Here we take λ to be independent of x. Note that for finite quark masses, phase space limits Bjorken x to xmax =

Q2/(Q2 + P 2 + 4(m2 + λ2)) and protects g
(γ∗g)
1 |hard from reaching the ln(1 − x) singularity in Eq. (121). For this

photon-gluon fusion process, the first moment of the “hard” contribution is:

∫ 1

0

dxg
(γ∗g)
1 |hard = −αs

2π


1 +

2m2

P 2

1√
1 + 4(m2+λ2)

P 2

ln




√
1 + 4(m2+λ2)

P 2 − 1
√

1 + 4(m2+λ2)
P 2 + 1




 . (122)

The “soft” contribution to the first moment of g1 is then obtained by subtracting Eq. (122) from the inclusive first
moment (obtained by setting λ = 0).

For fixed gluon virtuality P 2 the photon-gluon fusion
process induces two distinct contributions to the first
moment of g1. Consider the leading twist contribution,
Eq. (122). The first term, −αs

2π , in Eq.(122) is mass-
independent and comes from the region of phase space
where the struck quark carries large transverse momen-
tum squared k2

t ∼ Q2. It measures a contact photon-
gluon interaction and is associated (Bass et al., 1991;
Carlitz et al., 1988) with the axial anomaly though the
K+ Chern-Simons current contribution to JGI

µ5 . The
second mass-dependent term comes from the region of
phase-space where the struck quark carries transverse
momentum k2

t ∼ m2, P 2. This positive mass dependent
term is proportional to the mass squared of the struck
quark. The mass-dependent in Eq. (122) can safely be ne-

glected for light-quark flavor (up and down) production.
It is very important for strangeness and charm produc-
tion (Bass et al., 1999). For vanishing cut-off (λ2 = 0)
this term vanishes in the limit m2 ≪ P 2 and tends to
+αs

2π when m2 ≫ P 2 (so that the first moment of g
(γ∗g)
1

vanishes in this limit). The vanishing of
∫ 1

0 dxg
(γ∗g)
1 in

the limit m2 ≪ P 2 to leading order in αs(Q
2) follows

from an application (Bass et al., 1998) of the fundamen-
tal GDH sum-rule.

One can also analyze the photon-gluon fusion pro-
cess using x dependent cut-offs. Examples include the
virtuality of the struck quark or the invariant mass
squared of the quark-antiquark pair produced in the
photon-gluon collision (Bass et al., 1991; Bass et al.,
1998; Mankiewicz, 1991; Manohar, 1991). These cut-offs
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correspond to different jet definitions and different fac-
torization schemes in the QCD parton model.

Eq. (122) leads to the well known formula quoted in
Section I

g
(0)
A =

(
∑

q

∆q − 3
αs

2π
∆g

)

partons

+ C∞. (123)

Here ∆g is the amount of spin carried by polarized gluon
partons in the polarized proton and ∆qpartons measures
the spin carried by quarks and antiquarks carrying “soft”
transverse momentum k2

t ∼ m2, P 2. Note that the mass
independent contact interaction in Eq.(122) is flavour in-
dependent. The mass dependent term associated with
low kt breaks flavour SU(3) in the perturbative sea. The

third term C∞ = 1
2 limQ2→∞

Q2

2M2 β1(Q
2) describes any

fixed pole “subtraction at infinity” correction to g
(0)
A .

Equations (107) yield the renormalization group equa-

tion

{
αs

2π
∆g

}

Q2

=

{
αs

2π
∆g

}

∞
+

1

3

{
1/E(αs)− 1

}
g
(0)
A

∣∣∣∣
inv

.

(124)
It follows that the polarized gluon term satisfies

αs∆g ∼ constant, Q2 → ∞. (125)

This key result, first noted in the context of the QCD
parton model by Altarelli and Ross (Altarelli and Ross,
1988) and Efremov and Teryaev (Efremov and Teryaev,
1988) means that the polarized gluon contribution makes
a scaling contribution to the first moment of g1 at next-
to-leading order. (In higher orders the Q2 evolution of

∆g depends on the value of g
(0)
A |inv suggesting one, in

principle, method to search for any finite C∞.)
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FIG. 9
∫ 1

0
dx g

(γ∗g)
1 |soft for polarized strangeness production (left) and light-flavor (u or d) production (right) with

k2
t < λ2 in units of αs

2π
(Bass, 2003a). Here Q2 = 2.5GeV2 (dotted line) and 10GeV2 (solid line).

The transverse momentum dependence of the gluonic

and sea quark partonic contributions to g
(0)
A suggests the

interpretation of measurements of quark sea polarization
will depend on the large kt acceptance of the appara-

tus. Let g
(γ∗g)
1 |soft(λ) denote the contribution to g

(γ∗g)
1

for photon-gluon fusion where the hard photon scatters
on the struck quark or antiquark carrying transverse mo-
mentum k2

t < λ2. Fig. 9 shows the first moment of

g
(γ∗g)
1 |soft for the strange and light (up and down) flavour

production respectively as a function of the transverse
momentum cut-off λ2. Here we set Q2 = 2.5GeV2 (cor-
responding to the HERMES experiment) and 10GeV2

(SMC). Following (Carlitz et al., 1988), we take P 2 ∼
Λ2

qcd and set P 2 = 0.1GeV2. Observe the small value
for the light-quark sea polarization at low transverse mo-
mentum and the positive value for the integrated strange
sea polarization at low k2

t : kt < 1.5GeV at the HERMES
Q2 = 2.5GeV2.

E. Choice of currents and “spin”

The axial anomaly presents us with three candidate
currents we might try to use to define the quark spin con-
tent: Jµ5, the renormalization scale invariant E(αs)Jµ5
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and Jcon
µ5 . One might also consider using the chiralities

χ(q) from Eq.(116). We next explain how each current
yields gauge invariant possible definitions.

First, note that if we try to define intrinsic spin oper-
ators

Sk =

∫
d3x (qγkγ5q) k = 1, 2, 3 (126)

using the axial vector current operators, then we find that
the operators constructed using the gauge invariantly
renormalized current Jµ5 cannot satisfy the (spin) com-
mutation relations of SU(2) [Si, Sj ](µ

2) = iǫijkSk(µ2) at
more than one scale µ2 because of the anomalous dimen-
sion and the renormalization group factor associated with
E(αs) and the axial anomaly (Bass and Thomas, 1993b).
The most natural scale to normalize the axial vector cur-
rent operators to satisfy SU(2) is, perhaps, µ→ ∞ – that
is, using the scale invariant current {E(αs)Jµ5}. Then
we find [Si, Sj](µ

2) = iǫijkE(αs)Sk(µ2) if we use the
gauge invariant current renormalized at another scale.
One might argue that gluon spin is renormalization scale
dependent, Eq.(124), so not worry too much about this
issue but there are further points to consider.

Next choose the A0 = 0 gauge and define two operator
charges:

X(t) =

∫
d3z J05(z)

Q5 =

∫
d3z Jcon

05 (z).

(127)

Because partially conserved currents are not renormal-
ized it follows that Q5 is a time independent operator.
The chargeX(t) is manifestly gauge invariant whereasQ5

is invariant only under “small” gauge transformations;
the charge Q5 transforms as

Q5 → Q5 − 2f n (128)

where n is the winding number associated with the gauge
transformation U . Although Q5 is gauge dependent we
can define a gauge invariant chirality Q5 for a given op-
erator O through the gauge-invariant eigenvalues of the
equal-time commutator

[ Q5 , O ]− = −Q5 O. (129)

The gauge invariance of Q5 follows since this commutator
appears in gauge invariant Ward Identities (Crewther,
1978) despite the gauge dependence of Q5. The time
derivative of spatial components of the gluon field have
zero chiralty Q5

[ Q5 , ∂0Ai ]− = 0 (130)

but non-zero X charge

lim
t′→t

[
X(t′) , ∂0Ai(~x, t)

]

−
=

ifg2

4π2
G̃0i + O(g4 ln |t′−t|).

(131)

The analogous situation in QED is discussed in
Adler and Boulware (1969); Jackiw and Johnson (1969)
and Adler (1970). Eq.(130) follows from the non-
renormalization of the conserved current Jcon

µ5 . Eq.(131)
follows from the implicit Aµ dependence of the (anoma-
lous) gauge invariant current Jµ5. The higher-order
terms g4 ln |t′ − t| are caused by wavefunction renormal-
ization of Jµ5 (Crewther, 1978).

This formalism generalizes readily to the definition
of baryon number in the presence of electroweak gauge
fields. The vector baryon number current is sensitive
to the axial anomaly through the parity violating elec-
troweak interactions. If one requires that baryon num-
ber is renormalization group invariant and that the time
derivative of the spatial components of the W boson
field have zero baryon number, then one is led to us-
ing the conserved vector current analogy of Q5 to de-
fine the baryon number. Sphaleron induced electroweak
baryogenesis in the early Universe (Kuzmin et al., 1985;
Rubakov and Shaposhnikov, 1996) is then accompanied
by the formation of a “topological condensate” (Bass,
2004) which (probably) survives in the Universe we live
in today.

Lastly, we comment on the use of the chiralities χq and
the quantity χg to define the “quark spin” and “gluon
spin” content of the proton. This suggestion starts from
the decomposition

g
(0)
A = χq(0) + 3χg(0) (132)

but is less optimal because the separate “quark” and
“gluonic” pieces is very much infra-red sensitive and
strongly dependent of the ratios of the light quark masses
mu/md (Cheng and Li, 1989; Veneziano, 1989) – see also
(Gross et al., 1979; Ioffe, 1979). Indeed, for the po-
larized real photon structure function gγ

1 the quantity
χg
photon ∼ 30 at realistic deep inelastic values of Q2 (Bass,

1992) !

VII. CHIRAL SYMMETRY AND THE SPIN STRUCTURE
OF THE PROTON

Goldberger-Treiman relations relate the spin structure
of the proton to spontaneous chiral symmetry breaking
in QCD.

The isovector Goldberger-Treiman relation
(Adler and Dashen, 1968)

2Mg
(3)
A = fπgπNN (133)

relates g
(3)
A and therefore (∆u − ∆d) to the product of

the pion decay constant fπ and the pion-nucleon cou-
pling constant gπNN . This result is non-trivial. It means
that the spin structure of the nucleon measured in high-
energy, high Q2 polarized deep inelastic scattering is inti-
mately related to spontaneous chiral symmetry breaking
and low-energy pion physics. The Bjorken sum rule can

also be written
∫ 1

0
dx(gp

1 − gn
1 ) = 1

6{fπgπNN/2M}
{
1 +
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∑
ℓ≥1 cNSℓα

ℓ
s(Q)

}
(modulo small chiral corrections ∼ 5%

coming the finite light quark and pion masses).
The flavour-singlet generalization of the Goldberger-

Treiman was derived independently by Shore and
Veneziano (Shore and Veneziano, 1990, 1992) and Hat-
suda (Hatsuda, 1990).

Isoscalar extensions of the Goldberger-Treiman rela-
tion are quite subtle because of the axial U(1) problem
whereby gluonic degrees of freedom mix with the flavour-
singlet Goldstone state to increase the masses of the η
and η′ mesons. The vacuum condensates 〈vac|qq|vac〉
(q = u, d, s) spontaneously breaks both chiral SU(3) and
also axial U(1) symmetry. One expects a nonet of would-
be Goldstone bosons: the physical pions and kaons plus
also octet and singlet states. In the singlet channel the
axial anomaly and non-perturbative gluon topology in-
duce a substantial gluonic mass term for the singlet bo-
son. The Witten-Veneziano mass formula (Veneziano,
1979; Witten, 1979) relates the gluonic mass term for
the singlet boson to the topological susceptibility of pure
Yang-Mills (glue with no quarks): m̃2

η0
= − 6

f2
π
χ(0) where

χ(k2) =

∫
d4z i eik.z 〈vac| T Q(z)Q(0) |vac〉

∣∣∣∣
YM

(134)

and Q(z) denotes the topological charge density. With-
out this singlet gluonic mass term the η meson would
be approximately degenerate with the pion and the η′

meson would have a mass ∼
√

2m2
K −m2

π after we take
into account mixing between the octet and singlet bosons
induced by the strange quark mass.

In the chiral limit the flavour-singlet Goldberger-
Treiman relation reads

2Mg
(0)
A =

√
χ′(0) gφ0NN . (135)

Here χ′(0) is the first derivative of the topological sus-
ceptibility and gφ0NN denotes the one particle irreducible
coupling to the nucleon of the flavour-singlet Goldstone
boson which would exist in a gedanken world where OZI
is exact in the singlet axial U(1) channel. The φ0 is a
theoretical object and not a physical state in the spec-
trum. The important features of Eq.(135) are first that

g
(0)
A factorises into the product of the target dependent

coupling gφ0NN and the target independent gluonic term√
χ′(0). The coupling gφ0NN is renormalization scale in-

variant and the scale dependence of g
(0)
A associated with

the renormalization group factor E(αs) is carried by the

gluonic term
√
χ′(0). Motivated by this observation,

Narison, Shore and Veneziano (Narison et al., 1995) con-

jectured that any OZI violation in g
(0)
A |inv might be car-

ried by the target independent factor
√
χ′(0) and sug-

gested experiments to test this hypothesis by studying
semi-inclusive polarized deep inelastic scattering in the
target fragmentation region (which allows one to vary the
de facto hadron target – e.g. a proton or ∆ resonance)
(Shore and Veneziano, 1998).

OZI violation associated with the gluonic topological
charge density may be important to a host of η and η′ in-
teractions in hadronic physics. We refer to Bass (2002b)
for an overview of the phenomenology. Experiments un-
derway at COSY-Jülich are measuring the isospin de-
pendence of η and η′ production close to threshold in
proton-nucleon collisions (Moskal, 2004). These exper-
iments are looking for signatures of possible OZI viola-
tion in the η′ nucleon interaction. Anomalous glue may
play a key role in the structure of the light mass (about
1400-1600 MeV) exotic mesons with quantum numbers
JPC = 1−+ that have been observed in experiments at
BNL and CERN. These states might be dynamically gen-
erated resonances in η′π rescattering (Bass and Marco,
2002; Szczepaniak et al., 2003) mediated by the OZI vio-
lating coupling of the η′. Planned experiments at the
GSI in Darmstadt will measure the η mass in nuclei
(Hayano et al., 1999) and thus probe aspects of axial
U(1) dynamics in the nuclear medium.

VIII. CONNECTING QCD AND QCD INSPIRED
MODELS OF THE PROTON SPIN PROBLEM

We now collect and compare the various proposed ex-
planations of the proton spin problem (the small value of

g
(0)
A extracted from polarized deep inelastic scattering) in

roughly the order that they enter the derivation of the g1
spin sum-rule:

1. A “subtraction at infinity” in the dispersion rela-
tion for g1 perhaps generated in transition from
current to constituent quarks and involving gluon
topology and the mechanism of dynamical axial
U(1) symmetry breaking. In the language of Regge
phenomenology it is associated with a fixed pole
in the real part of the spin dependent part of the
forward Compton amplitude.

In this scenario the strange quark polarization ∆s
extracted from inclusive polarized deep inelastic
scattering and neutrino proton elastic scattering
would be different. A precision measurement of νp
elastic scattering would be very useful.

Note that fixed poles play an essential role in the
Adler and Schwinger term sum-rules - one should
be on the look out !

2. SU(3) flavour breaking in the analysis of hyperon
beta decays. Phenomenologically, SU(3) flavour
symmetry seems to be well respected in the mea-
sured beta decays, including the recent KTeV
measurement of the Ξ0 decay (Alavi-Harati et al.,
2001). Leader and Stamenov (2003) have recently
argued that even the most extreme SU(3) break-
ing scenarios consistent with hyperon decays will
still lead to a negative value of the strange quark
axial charge ∆s extracted from polarized deep
inelastic data. Possible SU(3) breaking in the
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large Nc limit of QCD has been investigated by
Flores-Mendiek et al. (2001).

One source of SU(3) breaking that we have so far
observed is in the polarized sea generated through
photon-gluon fusion where the strange-quark mass
term is important – see Eq.(122) and Fig.9. The
effect of including SU(3) breaking in the par-
ton model for ∆qpartons within various factoriza-
tion schemes has been investigated in Glück et al.
(2001).

3. Topological charge screening and target indepen-
dence of the “spin effect” generated by a small
value of χ(0) in the flavour-singlet Goldberger-
Treiman relation. This scenario could be tested
through semi-inclusive measurements where a pion
or D meson is detected in the target fragmentation
region, perhaps using a polarized ep collider with
Roman pot detectors (Shore and Veneziano, 1998).
These experiments could, in principle, be used to
vary the target and measure g1 for e.g. ∆++ and
∆− targets along the lines of the programme that
has been carried through in unpolarized scattering
(Holtmann et al., 1994).

4. Non-perturbative evolution associated with the
renormalization group factor E(αs) between deep
inelastic scales and the low-energy scale where
quark models might, perhaps, describe the twist
2 parton distributions (Jaffe, 1987). One feature
of this scenario is that (in the four flavour the-
ory) the polarized charm and strange quark con-
tributions evolve at the same rate with chang-
ing Q2 since ∆s − ∆c is flavour non-singlet (and
therefore independent of the QCD axial anomaly)
(Bass and Thomas, 1993a). Heavy-quark renor-
malization group arguments suggest that ∆c
is small (Bass et al., 2002; Kaplan and Manohar,
1988) up to 1/mc corrections.

5. Large gluon polarization ∆g ∼ 1 at the scale µ ∼
1GeV could restore consistency between the mea-

sured g
(0)
A and quark model predictions if the quark

model predictions are associated with ∆qpartons

(the low kt contribution to g
(0)
A ) in Eq.(123). ∆g

can be measured through a variety of gluon induced
partonic production processes including charm pro-
duction and two-quark-jet events in polarized deep
inelastic scattering, and prompt photon produc-
tion and jet studies in polarized proton collisions
at RHIC – see Section IX.E below. First attempts
to extract ∆g from QCD motivated fits to the Q2

dependence of g1 data yield values between 0 and
2 at Q2 ∼ 1GeV2 – see Section IX.C.

How big should we expect ∆g to be ?

Working in the framework of light-cone models one
finds contributions from “intrinsic” and “extrinsic”
gluons. Extrinsic contributions arise from gluon

bremstrahlung qV → qV g of a valence quark and
have a relatively hard virtuality. Intrinsic gluons
are associated with the physics of the nucleon wave-
function (for example, gluons emitted by one va-
lence quark and absorbed by another quark) and
have a relatively soft spectrum (Bass et al., 1999).
Light-cone models including QCD colour coherence
at small Bjorken x and perturbative QCD count-
ing rules at large x (Brodsky and Schmidt, 1990;
Brodsky et al., 1995) suggest values of ∆g ∼ 0.6
at low scales ∼ 1GeV2 – sufficient to account for
about half of the “missing spin” or measured value

of g
(0)
A .

Bag model calculations give values ∆g ∼ −0.4
(note the negative sign) including gluon exchange
contributions and no “self field” contribution
(where the gluon is emitted and absorbed by the
same quark) (Jaffe, 1996) and ∆g ∼ 0.24 (positive
sign) when the “self field” contribution is included
(Barone et al., 1998). A QCD sum-rule calculation
suggests ∆g ∼ 2 ± 1 (Saalfeld et al., 1998).

6. Large negatively polarized strangeness in the quark
sea (with small kt). This scenario can be tested
through semi-inclusive measurements of polarized
deep inelastic scattering provided that radiative
corrections, fragmentation functions and experi-
mental acceptance are under control.

Of course, the final answer may prove to be a cocktail
solution of these possible explanations or include some
new dynamics that has not yet been thought of.

In testing models of quark sea and gluon polariza-
tion it is important to understand the transverse mo-
mentum and Bjorken x dependence of the different sea-
quark dynamics. For example, sea quark contribu-
tions to deep inelastic structure functions are induced
by perturbative photon-gluon fusion (Altarelli and Ross,
1988; Carlitz et al., 1988; Efremov and Teryaev, 1988),
pion and kaon cloud physics (Cao and Signal, 2003;
Koepf et al., 1992; Melnitchouk and Malheiro, 1999), in-
stantons (Dolgov et al., 1999; Forte and Shuryak, 1991;
Nishikawa, 2004; Schafer and Zetocha, 2004), ... In gen-
eral, different mechanisms will produce sea with different
x and tt dependence.

Lattice calculations are also making progress in un-
ravelling the spin structure of the proton (Mathur et al.,
2000; Negele et al., 2004). Interesting new results

(Negele et al., 2004) suggest a value of g
(0)
A about 0.7 in

a heavy-pion world where the pion mass mπ ∼ 700− 900
MeV. Physically, in the heavy-pion world (away from the
chiral limit) the quarks become less relativistic and it is
reasonable to expect the nucleon spin to arise from the
valence quark spins. Sea quark effects are expected to be-
come more important as the quarks become lighter and
sea production mechanisms become important. It will

be interesting to investigate the behaviour of g
(0)
A in fu-

ture lattice calculations as these calculations approach
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the chiral limit.
In an alternative approach to understanding low en-

ergy QCD Witten (1983a,b) noticed that in the limit that
the number of colours Nc is taken to infinity, QCD be-
haves like a system of bosons and the baryons emerge as
topological solitions (Skyrmions) in the meson fields. In
this model the spin of the largeNc “proton” is a topologi-
cal quantum number. The “nucleon’s” axial charges turn
out to be sensitive to which meson fields are included in
the model and the relative contribution of a quark source
and pure mesons – we refer to the lectures of Aitchison
(1988) for a more detailed discussion of the Skyrmion
approach. The Skyrmion model with just pseudoscalars
“lives” in the SU(3)⊗SU(3)/SU(3) coset and has no com-
ponent in the axial U(1) sector – that is, gφ0NN in

Eq.(135) and g
(0)
A vanish in such models (Brodsky et al.,

1988). Skyrmion models with additional vector mesons

can yield a finite value for g
(0)
A (Johnson et al., 1990).

IX. THE SPIN-FLAVOUR STRUCTURE OF THE
PROTON

A. The valence region and large x

The large x region (x close to one) is very interesting
and particularly sensitive to the valence structure of the
nucleon. Valence quarks dominate deep inelastic struc-
ture functions for large and intermediate x (greater than
about 0.2). Experiments at Jefferson Lab are making the
first precision measurements of the proton’s spin struc-
ture at large x – see Fig.10

QCD motivated predictions for the large x region exist
based on perturbative QCD counting rules and quarks
models of the proton’s structure based on SU(6) [flavour
SU(3) ⊗ spin SU(2)] and scalar diquark dominance. We
give a brief explanation of these approaches.

1. Perturbative QCD counting rules predict that the
parton distributions should behave as a power
series expansion in (1 − x) when x → 1
(Brodsky et al., 1995; Farrar and Jackson, 1975).
The fundamental principle behind these counting
rules results is that for the leading struck quark
to carry helicity polarized in the same direction
as the proton the spectator pair should carry spin

zero, whence they are bound through longitudinal
gluon exchange. For the struck quark to be po-
larized opposite to the direction of the proton the
spectator pair should be in a spin one state, and
in this case one has also to consider the effect of
transverse gluon exchange. Calculation shows that
this is supressed by a factor of (1 − x)2. We use
q↑(x) and q↓(x) to denote the parton distributions
polarized parallel and antiparallel to the polarized
proton. One finds (Brodsky et al., 1995)

q↑↓(x) → (1 − x)2n−1+2∆Sz ; (x→ 1) (136)
Here n is the number of spectators and ∆Sz is the
difference between the polarization of the struck
quark and the polarization of the target nucleon.
When x → 1 the QCD counting rules predict that
the structure functions should be dominated by va-
lence quarks polarized parallel to the spin of the nu-
cleon. The ratio of polarized to unpolarized struc-
ture functions should go to one when x → 1. For
the helicity parallel valence quark distribution one
predicts

q+(x) ∼ (1 − x)3 (x→ 1) (137)

whereas for the helicity anti-parallel distribution
one obtains

q−(x) ∼ (1 − x)5 (x→ 1). (138)

Sea distributions are suppressed and the leading
term starts as (1 − x)5.

2. Scalar diquark dominance is based on the observa-
tion that, within the context of the SU(6) wave-
function of the proton in Eq. (9), one gluon ex-
change tends to make the mass of the scalar di-
quark pair lighter than the vector spin-one diquark
combination. One-gluon exchange offers an expla-
nation of the nucleon-∆ mass splitting and has the
practical consequence that in model calculations
of deep inelastic structure functions the scalar di-
quark term 1√

2
|u ↑ (ud)S=0〉 in Eq.(9) dominates

the physics at large Bjorken x (Close and Thomas,
1988).

In the large x region (x close to one) where sea quarks
and gluons can be neglected the neutron and proton spin
asymmetries are given by

An
1 =

∆u+ 4∆d

u+ 4d
, Ap

1 =
4∆u+ ∆d

4u+ d
. (139)

Rearanging these expressions one obtains formulae for
the separate up and down quark distributions in the pro-

ton:

∆u

u
=

4

15
Ap

1(4 +
d

u
) − 1

15
An

1 (1 + 4
d

u
)

∆d

d
=

4

15
An

1 (4 +
u

d
) − 1

15
Ap

1(1 + 4
u

d
). (140)

The predictions of perturbative QCD counting rules and
scalar diquark dominance models for the large x limit
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FIG. 10 Left: Recent data on An
1 from the E99-117 experiment (Zheng et al., 2004a). Right: extracted polarization asymmetries

for u + ū and d + d̄. For more details and references on the various model predictions, see (Zheng et al., 2004a).

TABLE I QCD motivated model predictions for the large x
limit of deep inelastic spin asymmetries and parton distribu-
tions.

Model ∆u/u ∆d/d Ap
1 An

1 d/u

SU(6) 2
3

- 1
3

5
9

0 1
2

Broken SU(6), scalar diquark 1 - 1
3

1 1 0

QCD Counting Rules 1 1 1 1 1
5

of these asymmetries are given in Table I. On the ba-
sis of both perturbative QCD and SU(6), one expects
the ratio of polarized to unpolarized structure func-
tions, A1n, should approach 1 as x → 1 (Isgur, 1999;
Melnitchouk and Thomas, 1996). It is vital to test this
prediction. If it fails we understand nothing about the
valence spin structure of the nucleon.

Interesting new data from the Jefferson Labora-
tory Hall A Collaboration the neutron asymmetry An

1

(Zheng et al., 2004a) are shown in Fig. 10. This data
shows a clear trend for An

1 to become positive at large
x. The crossover point where An

1 changes sign is particu-
larly interesting because the value of x where this occurs
in the neutron asymmetry is the result of a competition
between the SU(6) valence structure (Close and Thomas,
1988) and chiral corrections (Schreiber and Thomas,
1988; Steffens, 1995). Fig. 10 also shows the extracted
valence polarization asymmetries. The data are consis-
tent with constituent quark models with scalar diquark
dominance which predict ∆d/d→ −1/3 at large x, while
perturbative QCD counting rules predictions (which ne-
glect quark orbital angular momentum) give ∆d/d → 1
and tend to deviate from the data, unless the convergence

FIG. 11 The isovector structure functions 2xg
(p−n)
1

(SLAC data) and F
(p−n)
2 (NMC) from Bass (1999).

to 1 sets in very late.
A precision measurement of A1n up to x ∼ 0.8 will

be possible following the 12 GeV upgrade of Jefferson
Laboratory (Meziani, 2002).

B. The isovector part of g1

Constituent quark model predictions for g1 work very
well in the isovector channel. First, as highlighted in Sec-
tion III.B above, the Bjorken sum rule which relates the
first moment of the isovector part of g1, (gp

1 − gn
1 ), to the
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FIG. 12 The ratio R(3) = 2xg
(p−n)
1 /F

(p−n)
2 from Bass

(1999).

isovector axial charge g
(3)
A has been confirmed in polar-

ized deep inelastic scattering experiments at the level of
10% (Windmolders, 1999). Second, looking beyond the
first moment, one finds the following intriguing observa-
tion about the shape of (gp

1 − gn
1 ). Figure 11 (from Bass

(1999)) shows 2x(gp
1 − gn

1 ) (SLAC data) together with
the isovector structure function (F p

2 − Fn
2 ) (NMC data).

The ratio R(3) = 2x(gp
1 − gn

1 )/(F p
2 − Fn

2 ) is plotted in
Fig. 12. It measures the ratio of polarized to unpolar-
ized isovector quark distributions. In the QCD parton
model 5

2x(gp
1−gn

1 ) =
1

3
x

[
(u+u)↑−(u+u)↓−(d+d)↑+(d+d)↓

]

(141)
and

(F p
2 −Fn

2 ) =
1

3
x

[
(u+u)↑+(u+u)↓− (d+d)↑− (d+d)↓

]

(142)
The data reveal a large isovector contribution in g1

and the ratio R(3) is observed to be approximately con-
stant (at the value ∼ 5/3 predicted by SU(6) constituent
quark models) for x between 0.03 and 0.2, and goes to-
wards one when x→ 1 (consistent with the prediction of
both QCD counting rules and scalar diquark dominance

5 In a full description one should also include the perturbative
QCD Wilson coefficients for the non-singlet spin difference and
spin averaged cross-sections. However, the affect of these coeffi-
cients makes a non-negligible contribution to the deep inelastic
structure functions only at x < 0.05 and is small in the kine-
matics where there is high Q2 spin data. There is no gluonic or
single pomeron contributions to the isovector structure functions
(gp

1 − gn
1 ) and (F p

2 − Fn
2 ).

models). The small x part of this data is very interest-
ing. The area under (F p

2 − Fn
2 )/2x is determined by the

Gottfried integral (Arneodo et al., 1994; Gottfried, 1967)
and is about 25% suppressed relative to the simple SU(6)
prediction (by the pion cloud, Pauli blocking, ... ). The
area under (gp

1−gn
1 ) is fixed by the Bjorken sum rule (and

is also about 25% suppressed relative to the SU(6) pre-
diction – the suppression here being driven by relativistic
effects in the nucleon and by perturbative QCD correc-
tions to the Bjorken sum-rule). Given that perturbative
QCD counting rules or scalar diquark models work and
assuming that the ratio R(3) takes the constituent quark

prediction at the canonical value of x ∼ 1
3 , one finds

(Bass, 1999) that the observed shape of gp
1 −gn

1 is almost
required to reproduce the area under the Bjorken sum

rule (which is determined by the physical value of g
(3)
A —

a non-perturbative constraint)! The constant ratio in the
low to medium x range contrasts with the naive Regge
prediction using a1 exchange (and no hard-pomeron a1

cut) that the ratio R(3) should fall and be roughly pro-
portional to x as x → 0. It would be very interesting to
have precision measurements of g1 at high energy and low
Q2 from a future polarized ep collider to test the various
scenarios how small x dynamics might evolve through the
transition region and the application of spin dependent
Regge theory.

C. QCD fits to g1 data

In deep inelastic scattering experiments the different x
data points on g1 are each measured at different values
of Q2, viz. xexpt.(Q

2). One has to evolve these exper-
imental data points to the same value of Q2 in order
to test the Bjorken (Bjorken, 1966, 1970) and Ellis-Jaffe
(Ellis and Jaffe, 1974) sum-rules. DGLAP evolution is
frequently used in analyses of polarized deep inelastic
data to achieve this.

The λ2 dependence of the parton distributions is given
by the DGLAP equations (Altarelli and Parisi, 1977)

d

dt
∆Σ(x, t) =

αs(t)

2π

[∫ 1

x

dy

y
∆Pqq(

x

y
)∆Σ(y, t)

+ 2f

∫ 1

x

dy

y
∆Pqg(

x

y
)∆g(y, t)

]

d

dt
∆g(x, t) =

αs(t)

2π

[∫ 1

x

dy

y
∆Pgq(

x

y
)∆Σ(y, t)

+

∫ 1

x

dy

y
∆Pgg(

x

y
)∆g(y, t)

]

(143)

where Σ(x, t) =
∑

q ∆q(x, t) and t = lnλ2. The splitting

functions Pij in Eq.(63) have been calculated at leading-
order by Altarelli and Parisi (Altarelli and Parisi, 1977)
and at next-to-leading order by Mertig, Zijlstra and van
Neervan (Mertig, 1996; Zijlstra and van Neervan, 1994)
and Vogelsang (Vogelsang, 1996).
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Similar to the unpolarized data global NLO pertur-
bative QCD analyses are performed on the polarized
structure function data sets. Fits are performed in dif-
ferent schemes, e.g. the AB, chiral invariant (CI) or
JET and MS schemes. In the MS scheme the polar-
ized gluon distribution does not contribute explictly to
the first moment of g1. In the AB and JET schemes
on the other hand the polarized gluon (axial anomaly
contribution) αs∆g does contribute explicitly to the first
moment. For the SMC data one finds for the MS (AB)
scheme at a Q2 of 1 GeV2 (Adeva et al., 1998b): ∆Σ =
0.19 ± 0.05(0.38 ± 0.03) and ∆g = 0.25+0.29

−0.22(1.0
+1.2
−0.3)

where ∆Σ = (∆u + ∆d + ∆s). The main source of er-
ror in the QCD fits comes from lack of knowledge about
g1 in the small x region and (theoretical) the functional
form chosen for the quark and gluon distributions in the
fits. Note that these QCD fits in both the AB and MS
schemes give values of ∆Σ which are smaller than the
Ellis-Jaffe value 0.6.

New fits are now being produced taking into account
all the available data including new data from polarized
semi-inclusive deep inelastic scattering. Typical polar-
ized distributions extracted from the fits are shown in
Fig. 13. Given the uncertainties in the fits, values of ∆g
are extracted ranging between about zero and +2. In
these pQCD analyses one ends up with a consistent pic-
ture of the proton spin: the low value of ∆Σ may be
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FIG. 13 Recent Hermes results (Stoesslein, 2002) for the
quark and antiquark polarizations extracted from semi-
inclusive DIS.

compensated by a large polarized gluon. The precision
on ∆g is however still rather modest. Moreover, it is vital
to validate this model with direct measurements of ∆g,
as we discuss in the next section. Also, the first moments
depend on integrations from x = 0 to 1. Perhaps there
is an additional component at very small x?

D. Polarized quark distributions and semi-inclusive
polarized deep inelastic scattering

As noted above, there are several possible mecha-
nisms for producing (polarized) sea quarks in the nu-
cleon: photon-gluon fusion, the meson cloud of the nu-
cleon, instantons, ... In general the different dynamics
will produce (polarized) sea with different x and trans-
verse momentum dependence.

Semi-inclusive measurements of fast pions and kaons
in the current fragmentation region with final state par-
ticle identification can be used to reconstruct the in-
dividual up, down and strange quark contributions to
the proton’s spin (Close, 1978; Close and Milner, 1991;
Frankfurt et al., 1989). In contrast to inclusive polarized
deep inelastic scattering where the g1 structure function
is deduced by detecting only the scattered lepton, the
detected particles in the semi-inclusive experiments are
high-energy (greater than 20% of the energy of the in-
cident photon) charged pions and kaons in coincidence
with the scattered lepton. For large energy fraction
z = Eh/Eγ → 1 the most probable occurence is that
the detected π± and K± contain the struck quark or an-
tiquark in their valence Fock state. They therefore act
as a tag of the flavour of the struck quark (Close, 1978).

In leading order (LO) QCD the double-spin asymmetry
for the production of hadrons h in semi-inclusive polar-
ized γ∗ polarized proton collisons is:

Ah
1p(x,Q

2) ≃
∑

q,h e
2
q∆q(x,Q

2)
∫ 1

zmin
Dh

q (z,Q2)
∑

q,h e
2
qq(x,Q

2)
∫ 1

zmin
Dh

q (z,Q2)
(144)

where zmin ∼ 0.2. Here

Dh
q (z,Q2) =

∫
dk2

tD
h
q (z, k2

t , Q
2) (145)

is the fragmentation function for the struck quark or
antiquark to produce a hadron h (= π±,K±) carrying
energy fraction z = Eh/Eγ in the target rest frame;
∆q(x,Q2) is the quark (or antiquark) polarized parton
distribution and eq is the quark charge. Note the inte-
gration over the transverse momentum kt of the final-
state hadrons (Close and Milner, 1991). (In practice this
integration over kt is determined by the acceptance of
the experiment.) Since pions and kaons have spin zero,
the fragmentation functions are the same for both polar-
ized and unpolarized leptoproduction. NLO corrections
to Eq. (144) are discussed in de Florian et al. (1998);
de Florian and Sassot (2000).
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FIG. 14 Recent Hermes results (Airapetian et al., 2004a) for
the quark and antiquark polarizations extracted from semi-
inclusive DIS.

This programme for polarized deep inelastic scatter-
ing was pioneered by the SMC (Adeva et al., 1998c)
and HERMES (Ackerstaff et al., 1999) Collaborations
with new recent measurements from HERMES reported
in Airapetian et al. (2004a,b). Fig. 14 shows the lat-
est results on the flavor separation from HERMES
(Airapetian et al., 2004a), which were obtained using a
leading-order (naive parton model) Monte-Carlo code
based “purity” analysis. The polarization of the up and
down quarks are positive and negative respectively, while
the sea polarization data are consistent with zero and not
inconsistent with the negative sea polarization suggested
by inclusive deep inelastic data within the measured x
range (Blümlein and Böttcher, 2002; Glück et al., 2001).
However, there is also no evidence from this semi-
inclusive analysis for a large negative strange quark po-
larization. For the region 0.023 < x < 0.3 the ex-
tracted ∆s integrates to the value +0.03 ± 0.03 ± 0.01
which contrasts with the negative value for the polarized
strangeness (2) extracted from inclusive measurements of
g1. It will be interesting to see whether this effect persists
in forthcoming semi-inclusive data from COMPASS.

The HERMES data also favour an isospin symmetric
sea ∆ū− ∆d̄, but with large uncertainties.

An important issue for semi-inclusive measurements
is the angular coverage of the detector (Bass, 2003a).
The non-valence spin-flavour structure of the proton
extracted from semi-inclusive measurements of polar-

ized deep inelastic scattering may depend strongly on
the transverse momentum (and angular) acceptance
of the detected final-state hadrons which are used to
determine the individual polarized sea distributions.
The present semi-inclusive experiments detect final-state
hadrons produced only at small angles from the in-
cident lepton beam (about 150 mrad angular cover-
age) The perturbative QCD “polarized gluon interpre-
tation” (Altarelli and Ross, 1988; Efremov and Teryaev,
1988) of the inclusive measurement (2) involves physics
at the maximum transverse momentum (Bass, 2003a;
Carlitz et al., 1988) and large angles – see Fig.9. Observe
the small value for the light-quark sea polarization at low
transverse momentum and the positive value for the in-
tegrated strange sea polarization at low k2

t : kt < 1.5GeV
at the HERMES Q2 = 2.5GeV2. When we relax the
transverse momentum cut-off, increasing the acceptance
of the experiment, the measured strange sea polariza-
tion changes sign and becomes negative (the result im-
plied by fully inclusive deep inelastic measurements). For
HERMES the average transverse momentum of the de-
tected final-state fast hadrons is less than about 0.5 GeV
whereas for SMC the kt of the detected fast pions was less
than about 1 GeV. Hence, there is a question whether
the leading-order sea quark polarizations extracted from
semi-inclusive experiments with limited angular resolu-
tion fully include the effect of the axial anomaly or not.

Recent theoretical studies motivated by this data in-
clude also possible effects associated spin dependent
fragmentation functions (Christova et al., 2001), possible
higher twist effects in semi-inclusive deep inelastic scat-
tering, and possible improvements in the Monte Carlo
(Kotzinian, 2003).

The dependence on the details of the fragmentation
process limits the accuracy of the method above. At
RHIC (Bunce et al., 2000) the polarization of the u, u, d
and d quarks in the proton will be measured directly
and precisely using W boson production in ud → W+

and du → W−. The charged weak boson is produced
through a pure V-A coupling and the chirality of the
quark and anti-quark in the reaction is fixed. A parity
violating asymmetry for W+ production in pp collisions
can be expressed as

A(W+) =
∆u(x1)d(x2) − ∆d(x1)u(x2)

u(x1)d(x2) + d(x1)u(x2)
(146)

For W− production u and d quarks should be ex-
changed. The expression converges to ∆u(x)/u(x) and
−∆d(x)/d(x) in the limits x1 ≫ x2 and x2 ≫ x1 re-
spectively. The momentum fractions are calculated as
x1 = MW√

s
eyW and x2 = MW√

s
e−yW , with yW the rapidity

of the W . The experimental difficulty is that the W is
observed through its leptonic decayW → lν and only the
charged lepton is observed. With the assumed integrated
luminosity of 800 pb−1 at

√
s = 500 GeV, one can expect

about 5000 events each for W+ and W−. The resulting
measurement precision is shown in Fig. 15.
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FIG. 15 Expected sensitivity (Bunce et al., 2000) for the fla-
vor decomposition of quark and anti-quark polarizations at
RHIC.

It has also been pointed out that neutrino factories
would be an ideal tool for polarized quark flavour de-
composition studies. These would allow one to collect
large data samples of charged current events, in a kine-
matic region (x,Q2) of the present fixed target data
(Forte et al., 2001). A complete separation of all four
flavours and anti-flavours would become possible, includ-
ing ∆s(x,Q2).

E. The polarized gluon distribution ∆g(x,Q2)

Motivated by the discovery of Altarelli and Ross
(1988) and Efremov and Teryaev (1988) that polarized
glue makes a scaling contribution to the first moment of
g1, αs∆g ∼ constant, there has been a vigorous and
ambitious programme to measure ∆g. The NLO QCD
motivated fits to the inclusive g1 data are suggestive that,
perhaps, the net polarized glue might be positive but
more direct measurements involving glue sensitive ob-
servables are needed to really extract the magnitude of
∆g and the shape of ∆g(x,Q2) including any possible
nodes in the distribution function. Possible channels in-
clude gluon mediated processes in semi-inclusive polar-
ized deep inelastic scattering and hard QCD processes in
high energy polarized proton-proton collisions at RHIC.

COMPASS has been conceived to measure ∆g via the
study of the photon gluon fusion process, as shown in

Fig. 16. Hence the cross section of this process is di-
rectly related to the gluon density at the Born level.
The experimental technique consists in the reconstruc-
tion of charmed mesons. Additionally COMPASS will
use the same process but with high pt particles instead
of charm to access ∆g. This may lead to samples with
larger statistics, but these have larger background con-
tributions, namely from QCD Compton processes and
fragmentation. The expected sensitivity on the measure-
ment of ∆g/g from these measurements is estimated to
be about δ(∆g/g) = 0.1 at xg ∼ 0.1.

p
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c

c
q

γ*

µ

k

G

FIG. 16 c c production in Photon Gluon Fusion

HERMES was the first to attempt to measure ∆g us-
ing high pt charged particles, as proposed for COMPASS
above, and nearly real photons 〈Q2〉 = 0.06GeV2. The
measurement is at the limit of where a perturbative treat-
ment of the data can be expected to be valid, but the
result is interesting: ∆g/g = 0.41± 0.18± 0.03 at an av-
erage < xg >= 0.17 (Airapetian et al., 2000). The SMC
Collaboration have performed a similar analysis for their
own data keeping Q2 > 1GeV2. An average gluon polar-
ization was extracted ∆g/g = −0.20 ± 0.28 ± 0.10 at an
average gluon momentum xg = 0.07 (Adeva et al., 2004).

The hunt for ∆g is also one of the main physics drives
for polarized RHIC. The key processes used here are
high-pt prompt photon production pp → γX , jet pro-
duction pp → jets +X , and heavy flavour production
pp → ccX, bbX, J/ψX . Due to the first stage detector
capabilities most emphasis has so far been put on the
prompt photon channel. Measurements of ∆g/g are ex-
pected in the gluon x range 0.03 < xg < 0.3.

These anticipated RHIC measurements of ∆g have in-
spired new theoretical developments aimed at implement-
ing higher-order calculations of partonic cross-sections
into global analyses of polarized parton distribution func-
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TABLE II Polarized partons from RHIC

reaction LO subprocesses partons probed x range

pp → jetsX qq, qq, qg, gg → jetX ∆q, ∆g x > 0.03

pp → πX qq, qq, gg → πX ∆q, ∆g x > 0.03

pp → γX qg → qγ, qq → gγ ∆g x > 0.03

pp → QQX gg → QQ, qq → QQ ∆g x > 0.01

pp → W±X qq′ → W± ∆u, ∆u, ∆d, ∆d x > 0.06

tions, which will benefit the analyses of future polarized
pp data to measure ∆g. Hard polarized reactions at
RHIC and the polarized parton distributions that they
probe are summarized in Table II.

input

∆g = g
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FIG. 17 The PHENIX data (Adler et al., 2004) for the
spin asymmetry Aπ

LL along with NLO pertubative QCD
predictions for various ∆g (Jäger et al., 2004)

In the first runs at RHIC longitudinal the double spin
asymmetry for production of a leading pion, π0, with
large transverse momentum has been used as a surrogate
jet to investigate possible gluon polarization in the pro-
ton. NLO perturbative QCD corrections to this process
have been calculated in de Florian (2003) and Jäger et al.
(2003). The data from PHENIX (Adler et al., 2004)
are consistent with a significant (up to a few percent)
negative asymmetry Aπ

LL for pion transverse momentum
1 < p⊥ < 4GeV in contradiction with the predictions of
leading twist perturbative QCD calculations, which pro-
vide a good description of the unpolarized cross-section in
the same kinematics. It will be interesting to see whether
this effect survives more precise data. The NLO pertur-
bative QCD analysis of Jäger et al. (2004) suggests that
the leading power in p⊥ contribution to Aπ

LL cannot be
large and negative in the measured range of p⊥ within the
framework of perturbative QCD independent of the sign

of ∆g. One would need to invoke power suppressed con-
tributions (though the leading power term seems to de-
scribe the corresponding unpolarized data) and/or non-
perturbative effects.

Future polarized ep colliders could add information in
two ways: by extending the kinematic range for mea-
surements of g1 or by direct measurements of ∆g. A
precise measurement of ∆g is crucial for a full under-
standing of the proton spin problem. HERA has shown
that large centre of mass system (CMS) energy allows
several processes to be used to extract the unpolarized
gluon distribution. These include jet and high pt hadron
production, charm production both in DIS and photo-
production, and correlations between multiplicities of the
current and target hemisphere of the events in the Breit
frame. The most promising process for a direct extrac-
tion of ∆g is di-jet production (De Roeck et al., 1999;
Rädel and De Roeck, 2002). The underlying idea is to
isolate boson-gluon fusion events where the gluon distri-
bution enters at the Born level.

X. TRANSVERSITY

A degree of freedom which is currently of considerable
interest is the density of transversely polarized quarks in-
side a transversely polarized proton (Barone et al., 2002).

The twist-2 transversity distributions
(Artru and Mekhfi, 1990; Jaffe and Ji, 1992;
Ralston and Soper, 1979) can be interpreted in parton
language as follows: consider a nucleon moving with
(infinite) momentum in the ê3-direction, but polarized
along one of the directions transverse to ê3. δqa(x,Q2)
counts the quarks of flavour a and momentum fraction
x with their spin parallel the spin of a nucleon minus
the number antiparallel. That is, in analogy with
Eq. (28), δq(x) measures the distribution of partons
with transverse polarization in a transversely polarized
nucleon:

δf(x,Q2) = f↑ − f↓ . (147)

In a helicity basis, one finds that transversity corresponds
to a helicity-flip structure, as shown in Fig. 18. This pre-
cludes a gluon transversity distribution at leading twist.
It also makes transversity a probe of chiral symmetry
breaking in QCD (Collins, 1993b).+ �+ �> >
FIG. 18 Transversity in helicity basis.

If quarks moved nonrelativistically in the nucleon δq
and ∆q would be identical since rotations and Euclidean
boosts commute and a series of boosts and rotations can
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convert a longitudinally polarized nucleon into a trans-
versely polarized nucleon at infinite momentum. The
difference between the transversity and helicity distribu-
tions reflects the relativistic character of quark motion in
the nucleon. There are other important differences be-
tween transversity and helicity. For example, quark and
gluon helicity distributions (∆q and ∆g) mix under Q2-
evolution. There is no analog of gluon transversity in the
nucleon, so δq evolves without mixing, like a non-singlet
parton distribution function. The lowest moment of the
transversity is proportional to the nucleon matrix ele-
ment of the tensor charge, q̄iσ0iγ5q, which is C-odd. Not
coupling to glue or q̄q pairs, the tensor charge promises to
be more quark-model–like than the singlet axial-charge
(though it is scale dependent) and should be an interest-
ing contrast (Jaffe, 2001).

While little is presently known about the shape of the
transversity distributions some general properties can be
deduced from QCD arguments. First, under QCD evolu-

tion the moments
∫ 1

0 dxx
n−1δq(x,Q2) decrease with in-

creasing Q2. Second, in leading order the transversity
distribution satisfies Soffer’s inequality (Soffer, 1995)

|δq(x,Q2)| ≤ 1

2

[
q(x,Q2) + ∆q(x,Q2)

]
. (148)

The experimental study of transversity distributions
at leading-twist requires observables which are the prod-
uct of two objects with odd chirality – either the par-
ton distribution functions or fragmentation functions. In
proton-proton collisions the transverse double spin asym-
metry, ATT , is proportional to δqδq̄ with even chiral-
ity. However, the asymmetry is small requiring very
large luminosity samples because of the large background
from gluon induced processes in unpolarized scattering.
The most promising process to measure this double spin
asymmetry is perhaps the Drell-Yan reaction.

Single transverse spin asymmetries AN are being stud-
ied in polarized pp and ep collisions with a view to learn-
ing about transversity. The key process is

A(p,~sT ) +B(p′) → C(l) +X (149)

where C = high pt pion, photon, ... Leading pt be-
haviour of the produced pion is expected from the Collins
(Collins, 1993b) and Sivers (Sivers, 1991) effects. The
Collins effect involves the chiral-odd transversity distri-
bution together with a chiral-odd fragmentation func-
tion whereas the Sivers effect is associated with intrinsic
transverse momentum in the initial state. The challenge
is to disentangle these effects, and also any other effects,
which might be lingering in the data.

We outline the Collins and Sivers effects.
Collins showed (Collins, 1993b) that properties of frag-

mentation might be exploited to obtain a “transversity
polarimeter”: a pion produced in fragmentation will have
some transverse momentum with respect to the momen-
tum of the transversely polarized fragmenting parent
quark. There may then be a correlation of the form

i~sT · (~Pπ × ~k⊥). The fragmentation function associ-
ated with this correlation is the Collins function which is
chiral-odd and T-even. It combines with the chiral-odd
transversity distribution.

The Sivers effect (Sivers, 1991) is associated with in-
trinsic transverse momentum in the initial state: the k⊥
distribution of a quark in a transversely polarized hadron
can lead to an azimuthal asymmetry through the corre-

lation ~sT · (~P × ~k⊥). Final state interaction (FSI) gives
a transverse (⊥) momentum asymmetry of the active
quark before it fragments into hadrons (Bachetta et al.,
2004; Brodsky et al., 2002; Burkardt and Hwang, 2004;
Yuan, 2003) in contrast to the Collins effect where the
⊥ polarized quark fragments into mesons. At a deeper
lever in QCD this Sivers effect is linked to the gauge
link in operator definitions of the parton distributions.
In light-cone gauge A+ = 0 the gauge link factor is
trivial and equal to one for the “usual” k⊥ integrated
parton distributions. However, for k⊥ dependent par-
ton distributions the gauge link survives in a transverse
direction at light-cone component ξ− = ∞. The gauge-
link plays a vital role here: (Burkardt, 2004) without it
(e.g. in the pre-QCD “naive” parton model) time re-
versal invariance would imply a vanishing Sivers effect
(Belitsky et al., 2003a; Ji and Yuan, 2002). Through the
dependence on quark transverse momentum the Sivers
distribution function is related to quark orbital angular
momentum in the proton (Burkardt, 2002). The Sivers
distribution is chiral-even and T-odd.
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FIG. 19 Recent Star results for the asymmetry AN in pp →
π0X in the forward Feynman-xF region (Adams et al., 2004).

In proton-antiproton collisions the FermiLab exper-
iment E704 (

√
s = 20GeV) found large single-spin

asymmetries AN for π and Λ production – see e.g.
Adams et al. (1991a,b); Bravar et al. (1996). This ef-
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fect has also been observed in data from the STAR
collaboration at RHIC at centre of mass energy

√
s =

200GeV (Adams et al., 2004) – see Figure 19 which also
shows various theoretical predictions. In a recent paper
Anselmino et al. (2004b) take into account intrinsic par-
ton motion in the distribution and fragmentation func-
tions as well as in the elementary dynamics and find a
strong suppression of the Collins mechanism for this pro-
cess at large Feynman xF . The Sivers effect is not sup-
pressed and remains a candidate to explain the data. In
addition, one might ask whether there are also possible
power suppressed contributions from quark-gluon corre-
lations and other higher-twist effects. Further data at
higher values of kt where perturbative QCD calculations
become more reliable will be helpful.

The HERMES experiment has taken measurements of
charged pion production in ep scattering with transverse
target polarization (Airapetian et al., 2004c). The az-
imuthal distribution of the final state pions with respect
to the virtual photon axis carries information about the
transverse quark spin orientation through the Collins ef-
fect and about intrinsic transverse momentum through
the Sivers distribution function. In a partonic picture of
the nucleon the transverse single spin asymmetry A⊥ is
related to the transversity distributions as follows:

A⊥(x, z) = ACollins
⊥ +ASivers

⊥ + ... (150)

The transverse single spin asymmetry is expected to re-
ceive contributions from the Collins and Sivers effects

ACollins
⊥ ∝ |~ST | sin(φ+ φS)

∑
q e

2
qδq(x)H

⊥,q
1 (z)

∑
q e

2
qq(x)D

q
1(z)

(151)

and

ASivers
⊥ ∝ |~ST | sin(φ− φS)

∑
q e

2
qf

⊥,q
1T Dπ

q (z)
∑

q e
2
qq(x)D

q
1(z)

(152)

Here H⊥q
1 is the Collins function for a quark of flavour

q, f⊥,q
1T is the Sivers function, and Dq

1 is the regular
spin independent fragmentation function. The challenge
is to disentangle the two contributions associated with
different azimuthal angular dependence. Projecting out
the two angular components the HERMES analysis sug-
gests that both Collins and Sivers effects contribute in
the data. Futhermore, the data hints at the puzzling
result that both the “favoured” (for u → π+) and “un-
favoured” (for d → π+) Collins fragmentation functions
seem to contribute with equal weight (and opposite sign)
(Airapetian et al., 2004c).

Other processes and experiments will help to clarrify
the relative importance of the Collins and Sivers pro-
cesses in these asymmetries.

The Collins effect can be studied in e+e− collisions
using the high statistics data samples of BABAR and
BELLE. A detailed recipe how to extract interference
fragmentation functions from light-quark di-jet events in
e+e− collisions is given in Artru and Collins (1996). The

aim is to measure the two relevant fragmentation func-
tions: namely the Collins function H⊥

1 and the interfer-
ence fragmentation functions δq̂h1,h2 : For the first one
measures the fragmentation of a transversely polarized
quark into a charged pion and the azimuthal distribution
of the final state pion with respect to the initial quark mo-
mentum (jet-axis). For the second one measures the frag-
mentation of transversely polarized quarks into pairs of
hadrons in a state which is the superposition of two differ-
ent partial wave amplitudes; e.g. π+, π− pairs in the ρ, σ
invariant mass region (Collins et al., 1994; Jaffe et al.,
1988). The high luminosity and particle identification
capabilities of detectors at B-factories makes these mea-
surements possible.

For the Sivers distribution function one finds the inter-
esting property that it has the opposite sign in deep in-
elastic scattering and Drell-Yan reactions (Collins, 2002).
It thus violates the universality of parton distribution
functions. The Sivers distribution function might be
measurable through the transverse single spin asymme-
try AN for D meson production generated in p↑p scat-
tering (Anselmino et al., 2004a). Here the underlying
elementary processes guarantee the absence of any po-
larization in the final partonic state so that there is no
contamination from Collins like terms. Large dominance
of the process gg → cc̄ process at low and intermediate
xF offers a unique opportunity to measure the gluonic
Sivers distribution function. The gluonic Sivers function
could also be extracted from back-to-back correlations
in the azimuthal angle of jets in collisions of unpolar-
ized and transversely polarized proton beams at RHIC
(Boer and Vogelsang, 2004).

Transversity measurements have a bright future and
are already yielding surprises. Challenges in this field in-
clude disentangling the different Collins and Sivers con-
tributions. The results promise to be interesting and to
teach us about the role of quark transverse momentum,
kt, in deep inelastic scattering, the structure of the pro-
ton and fragmentation processes.

XI. DEEPLY VIRTUAL COMPTON SCATTERING AND
EXCLUSIVE PROCESSES

A. Orbital angular momentum

So far in this review we have concentrated on intrinsic
spin in the proton.

The orbital angular momentum structure of the pro-
ton is also of considerable interest and much effort has
gone into devising ways to measure it. The strategy in-
volves the use of hard exclusive reactions and the for-
malism of generalized parton distributions (GPDs) which
describes deeply virtual Compton scattering (DVCS)
and meson production (DVMP). Possible hints of quark
orbital angular momentum are also suggested by re-
cent form-factor measurements at Jefferson Laboratory
(Gayou et al., 2002; Jones et al., 2000). The ratio of the
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FIG. 20 Jefferson Lab data on the the ratio of the proton’s
Pauli to Dirac form-factors (Gayou et al., 2002).

spin-flip Pauli form-factor to the Dirac form-factor is ob-

served to have a 1/
√
Q2 behaviour in the measured re-

gion in contrast with the 1/Q2 behaviour predicted by
QCD Counting Rules (helicity conservation neglecting
angular momentum), viz. F1 ∼ 1/Q4 and F2 ∼ 1/Q6

(Brodsky and Lepage, 1981). However, this data can also
be fit with the formula

F2(Q
2)

F1(Q2)
=

µA

1 + (Q2/c) lnb(1 +Q2/a)
(153)

(with µA = 1.79, a = 4m2
π = 0.073 GeV2, b =

−0.5922, c = 0.9599 GeV2) prompting the question
at which Q2 the Counting Rules prediction is sup-
posed to work (Brodsky et al., 2002) and at which Q2

higher twist effects can be neglected. (Recall also that
the naive Counting Rules prediction fails to describe

the large x behaviour of ∆d/d in the presently mea-
sured kinematics – Section IX.A.) A 1/Q behaviour for
F2(Q

2)
F1(Q2) is found in a light-front Cloudy Bag calcula-

tion Miller and Frank (2002); Miller (2002) and in quark
models with orbital angular momentum (Ralston et al.,
2002; Ralston and Jain, 2004). A new perturbative
QCD calculation which takes into account orbital an-
gular momentum (Belitsky et al., 2003b) gives F2/F1 ∼
(log2Q2/Λ2)/Q2 which also fits the Jefferson Lab data
well. The planned 12 GeV upgrade at Jefferson Labora-
tory will enable us to measure these nucleon form-factors
at higher Q2 and the inclusive spin asymmetries at values
of Bjorken x closer to one, and thus probe deeper into
the kinematic regions where QCD Counting Rules should
apply. This data promises to be very interesting!

Deeply virtual Compton scattering (DVCS) provides
a possible experimental tool to access the quark to-
tal angular momentum, Jq, in the proton through the
physics of generalized parton distributions (GPDs) (Ji,
1997a,b). The form-factors which appear in the for-
ward limit (t → 0) of the second moment of the spin-
independent generalized quark parton distribution in the
(leading-twist) spin-independent part of the DVCS am-
plitude project out the quark total angular momentum
defined through the proton matrix element of the QCD
angular-momentum tensor. We explain this physics be-
low.

DVCS studies have to be careful to chose the kine-
matics not to be saturated by a large Bethe-Heitler
(BH) background where the emitted real photon is ra-
diated from the electron rather than the proton. The
HERMES and Jefferson Laboratory experiments mea-
sure in the kinematics where they expect to be domi-
nated by the DVCS-BH interference term and observe
the sinφ azimuthal angle and helicity dependence ex-
pected for this contribution – see Fig.22. First measure-
ments of the single spin asymmetry have been reported in
Airapetian et al. (2001); Stepanyan et al. (2001), which
have the characteristics expected from the DVCS-BH in-
terference.

B. Generalized parton distributions

For exclusive processes such as DVCS or hard me-
son production the generalized parton distributions
involve non-forward proton matrix elements (Diehl,
2003; Goeke et al., 2001; Ji, 1998; Radyushkin, 1997;
Vanderhaeghen et al., 1998). The important kinematic
variables are the virtuality of the hard photon Q2, the
momenta p−∆/2 of the incident proton and p+ ∆/2 of
the outgoing proton, the invariant four-momentum trans-
ferred to the target t = ∆2, the average nucleon momen-
tum P , the generalized Bjorken variable k+ = xP+ and

the light-cone momentum transferred to the target pro-
ton ξ = −∆+/2p+ . The generalized parton distribu-
tions are defined as the light-cone Fourier transform of
the point-split matrix element

P+

2π

∫
dy−e−ixP+y−〈p′|ψ̄α(y)ψβ(0)|p〉y+=y⊥=0

=
1

4
γ−αβ

[
H(x, ξ,∆2)ū(p′)γ+u(p)

+E(x, ξ,∆2)ū(p′)σ+µ ∆µ

2M
u(p)

]
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DVCS Bethe-Heitler interference. The sin φ azimuthal dependence of the single spin asymmetry is clearly visible in the data
(Airapetian et al., 2001; Stepanyan et al., 2001).

+
1

4
(γ5γ

−)αβ

[
H̃(x, ξ,∆2)ū(p′)γ+γ5u(p)

+Ẽ(x, ξ,∆2)ū(p′)γ5
∆+

2M
u(p)

]

(154)

(Here we work in the light-cone gauge A+ = 0 so that
the path-ordered gauge-link becomes trivial and equal to
one to maintain gauge invariance through-out.)

The physical interpretation of the generalized parton
distributions (before worrying about possible renormal-
ization effects and higher order corrections) is the follow-
ing. Expanding out the quark field operators in (154) in
terms of light-cone quantized creation and annihilation
operators one finds that for x > ξ (x < ξ) the GPD is
the amplitude to take a quark (anti-quark) of momentum
k − ∆/2 out of the proton and reinsert a quark (anti-
quark) of momentum k + ∆/2 into the proton some dis-
tance along the light-cone to reform the recoiling proton.
In this region the GPD is a simple generalization of the
usual parton distributions studied in inclusive and semi-
inclusive scattering. In the remaining region −ξ < x < ξ
the GPD involves taking out (or inserting) a qq̄ pair with
momentum k − ∆/2 and −k − ∆/2 (or k + ∆/2 and
−k + ∆/2) respectively. Note that the GPDs are inter-
pretated as probability amplitudes rather than densities.

In the forward limit the GPDs H and H̃ are related
to the forward parton distributions studied in (polarized)
deep inelastic scattering:

H(x, ξ,∆2)|ξ=∆2=0 = q(x)

H̃(x, ξ,∆2)|ξ=∆2=0 = ∆q(x) (155)

whereas the GPDs E and Ẽ have no such analogue. In
the fully renormalized theory the spin dependent distri-
butions H̃ and Ẽ will be sensitive to the physics of the
axial anomaly and, in this case, it is not easy to separate
off an “anomalous component” because the non-forward
matrix elements of the gluonic Chern-Simons current are
non-gauge-invariant even in the light-cone gauge A+ = 0.
Integrating over x the first moments of the GPDs are re-
lated to the nucleon form-factors:

∫ +1

−1

dxH(x, ζ,∆2) = F1(∆
2)

∫ +1

−1

dxE(x, ζ,∆2) = F2(∆
2)

∫ +1

−1

dxH̃(x, ζ,∆2) = GA(∆2)

∫ +1

−1

dxẼ(x, ζ,∆2) = GP (∆2) (156)

Here F1 and F2 are the Dirac and Pauli form-factors of
the nucleon, and GA and GP are the axial and induced-
pseudoscalar form-factors respectively. (The dependence
on ξ drops out after integration over x.)

The GPD formalism allows one, in principle, to extract
information about quark angular momentum from hard
exclusive reactions (Ji, 1997a). The current associated
with Lorentz transformations is

Mµνλ = zνTµλ − zλTµν (157)

where Tµν is the QCD energy-momentum tensor. Thus,
the total angular momentum operator is related to the
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energy-momentum tensor through the equation

Jz
q,g = 〈p′, 1

2
|
∫
d3z (~z x ~Tq,g)

z |p, 1
2
〉 (158)

The form-factors corresponding to the energy-
momentum tensor can be projected out by taking
the second moment with respect to x) of the GPD.
One finds Ji’s sum-rule for the total quark angular
momentum

Jq =
1

2

∫ +1

−1

dxx

[
H(x, ζ,∆2 = 0) + E(x, ζ,∆2 = 0)

]

(159)
The gluon “total angular momentum” could then be ob-
tained through the equation

∑

q

Jq + Jg =
1

2
(160)

In principle, it could also be extracted from precision
measurements of the Q2 dependence of hard exclusive
processes like DVCS and meson production at next-to-
leading-order accuracy where the quark GPD’s mix with
glue under QCD evolution.

To obtain information about the “orbital angular mo-
mentum” Lq we need to subtract the value of the “in-
trinsic spin” measured in polarized deep inelastic scat-
tering (or a future precision measurement of νp elastic
scattering) from the total quark angular momentum Jq

which is independent of the axial anomaly (Bass, 2002a;
Shore and White, 2000). This means that Lq is scheme
dependent with different schemes corresponding to differ-
ent physics content depending on how the scheme handles
information about the axial anomaly, large kt physics and
any possible “subtraction at infinity” in the dispersion re-
lation for g1. The quark total angular momentum Jq is
anomaly free in QCD so that QCD axial anomaly effects
occur with equal magnitude and opposite sign in Lq and
Sq. The “quark orbital angular momentum” Lq is mea-

sured by the proton matrix element of [q̄(~z x ~D)3q](0).
Besides its sensitivity to the axial anomaly, Lq is also sen-
sitive to gluonic degrees of freedom through the gauge-
covariant derivative — for a recent discussion see Jaffe
(2001). A first attempt to extract the valence contribu-
tions to the energy-momentum form-factors entering Ji’s
sum rule is reported in Diehl et al. (2004).

The study of GPDs is being pioneered in experiments
at HERMES, Jefferson Laboratory and COMPASS. Pro-
posals and ideas exist for dedicated studies using a 12
GeV CEBAF machine, a possible future polarized ep col-
lider (EIC) in connection with RHIC or JLab, and a high
luminosity polarized proton-antiproton collider at GSI.
To extract information about quark total angular mo-
mentum one needs high luminosity, plus measurements
over a range of kinematics Q2, x and ∆ (bearing in mind
the need to make reliable extrapolations into unmeasured
kinematics). There is a challenging programme to dis-
entangle the GPDs from the formalism and to undo the

convolution integrals which relate the GPDs to measured
cross-sections, and to check (experimentally) the kine-
matics where twist 2 dominates. Varying the photon
or meson in the final state will give access to different
spin-flavour combinations of GPDs even with unpolarized
beams and targets. Besides yielding possible information
about the spin structure of the proton, measurements of
hard exclusive processes will, in general, help to constrain
our understanding of the structure of the proton.

XII. POLARIZED PHOTON STRUCTURE FUNCTIONS

Deep inelastic scattering from photon targets reveals
many novel effects in QCD. The unpolarized photon
structure function has been well studied both theoret-
ically and experimentally. The polarized photon spin
structure function is an ideal (theoretical) laboratory
to study the QCD dynamics associated with the axial
anomaly.

The photon structure functions are observed experi-
mentally in e+ e− → hadrons where for example a hard
photon (large Q2) probes the quark structure of a soft
photon (P 2 ∼ 0). For any virtuality P 2 of the target
photon the measured structure functions receive a con-
tribution both from contact photon-photon fusion and
also a hadronic piece, which is commonly associated with
vector meson dominance (VMD) of the soft target pho-
ton. The hadronic term scales with Q2 whilst the con-
tact term behaves as lnQ2 as we let Q2 tend to ∞. This
result was discovered by Witten (1977) for the unpolar-
ized structure function F γ

2 and extended to the polarized
case in Refs. (Manohar, 1989; Sasaki, 1980). The lnQ2

scaling behaviour mimics the leading-order box diagram
prediction, but the coefficient of the logarithm receives a
finite renormalization in QCD. From the viewpoint of the
renormalization group the essential detail discovered by
Witten is that the coefficient functions of the photonic
and singlet hadronic operators will mix under QCD evo-
lution. The hadronic matrix elements are of leading or-
der in α whilst the photon operator matrix elements are
O(1). Since the hadronic coefficient functions are O(1)
and the photon coefficient functions start at O(α) the
photon structure functions receive leading order contri-
butions in α from both the hadronic and photonic chan-
nels.

In polarized scattering the first moment of gγ
1 is es-

pecially interesting. First, consider a real photon target
(and assume no fixed pole correction). The first moment
of gγ

1 vanishes

∫ 1

0

dx gγ
1 (x,Q2) = 0 (161)

for a real photon target independent of the virtuality
Q2 of the photon that it is probed with (Bass, 1992;
Bass et al., 1998). This result is non-perturbative. There
are two derivations. In the first we treat the real pho-
ton as the beam and the virtual photon, and apply the
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Gerasimov-Drell-Hearn sum rule. The anomalous mag-
netic moment of a photon vanishes to all orders because
of Furry’s theorem. Alternatively (for large Q2), we can
treat the deeply virtual photon as the beam and apply the
operator product expansion. The sum rule (161) holds
to all orders in perturbation theory and at every twist. 6

The interplay of QCD and QED dynamics here can be
seen through the axial anomaly equation

∂µJµ5 = 2mqqiγ5q +
αs

4π
GµνG̃

µν +
α

2π
Fµν F̃

µν (162)

(including the QED anomaly). The gauge-invariantly
renormalized axial-vector current can then be written as
the sum of the partially conserved current plus QCD and
abelian QED Chern-Simons currents

Jµ5 = Jcon
µ5 +Kµ + kµ (163)

where kµ is the anomalous Chern Simons current in QED.

The vanishing first moment of
∫ 1

0
dxgγ

1 is a sum of a

contact term −α
π

∑
q e

2
q measured by the QED Chern Si-

mons current and a hadronic term associated with the
two QCD currents in Eq.(163). The contact term is as-
sociated with high kt leptons and two quark jet events
(and no beam jet) in the final state. For the gluonic con-
tribution associated with polarized glue in the hadronic
component of the polarized photon, the two quark jet
cross section is associated with an extra soft “beam jet”.

For a virtual photon target one expects the first mo-
ment to exhibit similar behaviour to that suggested by
the tree box graph amplitude – that is, for P 2 ≫ m2

the first moment tends to equal just the QED anomalous
contribution and the hadron term vanishes. However,
here the mass scale m2 is expected to be set by the ρ me-
son mass corresponding to a typical hadronic scale and
vector meson dominance of the soft photon instead of the
light-quark mass or the pion mass (Shore and Veneziano,
1993a,b). Measurements of gγ

1 might be possible with a
polarized eγ collider (De Roeck, 2001). The virtual pho-
ton target could be investigated through the study of
resolved photon contributions to polarized deep inelastic
scattering from a nucleon target (Stratmann, 1998). Tar-
get mass effects in the polarized virtual photon structure
function are discussed in Baba et al. (2003).

XIII. CONCLUSIONS AND OPEN QUESTIONS

The exciting challenge to understand the “Spin Struc-
ture of the Proton” has produced many unexpected sur-
prises in experimental data and inspired much theoreti-
cal activity and new insight into QCD dynamics and the

6 If there is a fixed pole correction to the polarized real photon
spin sum-rule (161) then the correction will affect both the deep
inelastic first moment (applied to the deeply virtual photon) and
Gerasimov-Drell-Hearn (applied to the real photon) sum rules
for the polarized photon system.

interplay between spin and chiral/axial U(1) symmetry
breaking in QCD.

There is a vigorous global programme in experimen-
tal spin physics spanning (semi-)inclusive polarized deep
inelastic scattering, photoproduction experiments, exclu-
sive measurements over a broad kinematical region, po-
larized proton-proton collisions, fragmentation studies in
e+e− collisions and νp elastic scattering.

In this review we surveyed the present (and near fu-
ture) experimental situation and the new theoretical un-
derstanding that spin experiments have inspired. New
experiments (planned and underway) will surely produce
more surprises and exciting new challenges for theorists
as we continue our quest to understand the internal struc-
ture of the proton and QCD confinement related dynam-
ics.

We conclude with a summary of key issues and open
problems in QCD spin physics where the next genera-
tion of present and future experiments should yield vital
information:

• What happens to “spin” in the transition from cur-
rent to constituent quarks through dynamical axial
U(1) symmetry breaking ?

• How large is the gluon spin polarization in the pro-
ton ? If ∆g is indeed large, what would this mean
for models of the structure of the nucleon ? What
dynamics could produce a large ∆g ?

• Are there fixed pole corrections to spin sum rules
for polarized photon nucleon scattering ? If yes,
which ones ?

• Is gluon topology important in the spin structure
of the proton ?

• What is the x and kt dependence of the (negative)
polarized strangeness extracted from inclusive and
semi-inclusive polarized deep inelastic scattering ?

• How (if at all) do the effective intercepts for small
x physics change in the transition region between
polarized photoproduction and polarized deep in-
elastic scattering ?

• In which kinematics, if at all, does the magnitude
of the isosinglet component of g1 at small x exceed
the magnitude of the isovector component ?

• How does ∆d/d behave at x very close to one ?

• Does perturbative QCD factorization work for spin
dependent processes ? – viz. will the polarized
quark and gluon distributions extracted from the
next generation of experiments prove to be process
independent ?

• Is the small value of g
(0)
A extracted from polarized

deep inelastic scattering “target independent”, e.g.
through topological charge screening ?



42

• Can we find and oberserve processes in the η′ nu-
cleon interaction which are also sensitive to dynam-
ics which underlies the singlet axial charge ?

• How large is quark (and gluon) “orbital angular
momentum” in the proton ?

• Transversity measurements are sensitive to kt de-
pendent effects in the proton and framentation pro-
cesses. The difference between the C-odd transver-
sity distribution δq(x) and the C-even spin distri-
bution ∆q(x), viz. (δq−∆q)(x), probes relativistic
dynamics in the proton. Precision measurements at
large Bjorken x where just the valence quarks con-
tribute would allow a direct comparison and teach
us about relativistic effects in the confinement re-
gion.
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Moskal, G. Rädel, G.M. Shore, J. Soffer, P. van Baal, W.
Vogelsang and R. Windmolders. I thank C. Jarlskog for
her enthusiasm and support and A. Bialas for his invita-
tion to lecture at the 2003 Cracow School of Theoretical
Physics in Zakopane. Those lectures laid the foundation
for the present review. I thank C. Aidala, M. Amarian,
E. Beise, P. Bosted, K. Helbing, G. Mallot, Z.E. Meziani,
R. Tayloe, G. van der Steenhoven and U. Stoesslein for
helpful communications about experimental data during
the writing of this article. This work was supported in
part by the Austrian Science Fund (FWF grant M770-
N08). I thank R. Rosenfelder for helpful comments on
the manuscript.

References

Abarbanel, H.D., F.E. Low, I.J. Muzinich, S. Nussinov, and
J.H. Schwarz, 1967, Phys. Rev. 160, 1329.

Abarbanel, H.D., and M.L. Goldberger, 1968, Phys. Rev. 165,
1594.

Abe, K., et al. (E-154 Collaboration) , 1997, Phys. Rev. Lett.
79, 26.

Ackerstaff, K., et al. (HERMES Collaboration) , 1997, Phys.
Lett. B404, 383.

Ackerstaff, K., et al. (HERMES Collaboration) , 1999, Phys.
Lett. B464, 123.

Adams, D.L., et al. (FNAl E704 Collaboration) , 1991a, Phys.
Lett. B261, 201.

Adams, D.L., et al. (FNAL E704 Collaboration) , 1991b,
Phys. Lett. B264, 426.

Adams, J., et al. (STAR Collaboration) , 2004, Phys. Rev.
Lett. 92, 171801.

Adeva, B., et al. (SMC Collaboration) , 1998a, Phys. Rev.
D58, 112001.

Adeva, B., et al. (SMC Collaboration) , 1998b, Phys. Rev.
D58, 112002.

Adeva, B., et al. (SMC Collaboration) , 1998c, Phys. Lett.
B420, 180.

Adeva, B., et al. (SMC Collaboration) , 1999, Phys. Rev.
D60, 072004.

Adeva, B., et al. (SMC Collaboration) , 2004, Phys. Rev.
D70, 012002.

Adler, S.L., 1966, Phys. Rev. 143, 1144.
Adler, S.L., 1969, Phys. Rev. 177, 2426.
Adler, S.L., 1970, in Brandeis Lectures on Elementary Par-

ticles and Quantum Field Theory, edited by S. Deser, M.
Grisaru, and H. Pendleton, (MIT Press).

Adler, S.L., and R.F.. Dashen, 1968, Current Algebras and

Applications to Particle Physics (W.A. Benjamin).
Adler, S.L., and D.G. Boulware, 1969, Phys. Rev. 184, 1740.
Adler, S.S., et al. (PHENIX Collaboration) , 2004, eprint hep-

ex/0404027.
Ahrens, L.A., et al. (E734 Collaboration) , 1987, Phys. Rev.

D35, 785.
Ahrens, J., et al. (GDH Collaboration) , 2000, Phys. Rev.

Lett. 84, 5950.
Ahrens, J., et al. (GDH Collaboration) , 2001, Phys. Rev.

Lett. 87, 022003.
Ahrens, J., et al. (GDH Colaboration) , 2002, Phys. Rev. Lett.

88, 232002.
Airapetian, A., et al. (HERMES Collaboration) , 1998, Phys.

Lett. B442, 484.
Airapetian, A., et al. (HERMES Collaboration) , 2000, Phys.

Rev. Lett. 84, 2584.
Airapetian, A., et al. (HERMES Collaboration) , 2001, Phys.

Rev. Lett. 87, 182001.
Airapetian, A., et al. (HERMES Collaboration) , 2004a, Phys.

Rev. Lett. 92, 012005.
Airapetian, A., et al. (HERMES Collaboration) , 2004b,

eprint hep-ex/0407032.
Airapetian, A., et al. (HERMES Collaboration) , 2004c,

eprint hep-ex/0408013.
Aitchison, I.J.R., 1988, Oxford preprint OX 24/88 “The

Skyrme Model of the Nucleon”.
Alavi-Harati, A, et al. (KTeV Collaboration) , 2001, Phys.

Rev. Lett. 87, 132001.
Alberico, W., S.M. Bilenky, and C. Maieron, 2002, Phys. Rep.



43

358, 227.
Alguard, M.J., et al. , 1976, Phys. Rev. Lett. 37, 1261.
Alguard, M.J., et al. , 1978, Phys. Rev. Lett. 41, 70.
Altarelli, G., N. Cabibbo, and L. Maiani, 1972, Phys. Lett.

B40, 415.
Altarelli, G., and G. Parisi, 1977, Nucl. Phys. B126, 298.
Altarelli, G., and G.G. Ross, 1988, Phys. Lett. B212, 391.
Altarelli, G., R.D. Ball, S. Forte, and G. Ridolfi, 1997, Nucl.

Phys. B496, 337.
Amarian, M., et al. (Jefferson Lab E94-010 Collaboration) ,

2004, Phys. Rev. Lett. 92, 022301.
Anselmino, M., B.L. Ioffe, and E. Leader, 1989, Yad. Fiz. 49,

214.
Anselmino, M., A. Efremov, and E. Leader, 1995, Phys. Rep.

261, 1.
Anselmino, M., M. Boglione, U. D’ Alesio, E. Leader, and

F. Murgia, 2004a, eprint hep-ph/0407100.
Anselmino, M., M. Boglione, U. D’ Alesio, E. Leader, and

F. Murgia, 2004b, eprint hep-ph/0408356.
Anthony, P.L., et al. (E-154 Collaboration) , 1997, Phys. Rev.

Lett. 79, 26.
Anthony, P.L., et al. (E-155 Collaboration) , 1999, Phys. Lett.

B463, 339.
Anthony, P.L., et al. (E-155 Collaboration) , 2000, Phys. Lett.

B493, 19.
Anthony, P.L., et al. (E-155 Collaboration) , 2003, Phys. Lett.

B553, 18.
Arneodo, M., et al. (NMC Collaboration) , 1994, Phys. Rev.

D50, R1.
Artru, X., and M. Mekhfi, 1990, Z. Phys. C45, 669.
Artru, X., and J. Collins, 1996, Z. Phys. C69, 277.
Ashman, J., et al. (EMC Collaboration) , 1988, Phys. Lett.

B206, 364.
Ashman, J., et al. (EMC Collaboration) , 1989, Nucl. Phys.

B328, 1.
Baba, H., K. Sasaki, and T. Uematsu, 2003, Phys. Rev. D68,

064025.
Bachetta, A. A. Schafer, and J.J. Yang, 2004, Phys. Lett.

B578, 109.
Ball, R.D. S. Forte, and G. Ridolfi, 1996, Phys. Lett. B378,

255.
Barone, V., T. Calarco, and A. Drago, 1998, Phys. Lett.

B431, 405.
Barone, V., A. Drago, and P.G. Ratcliffe, 2002, Phys. Rept.

359, 1.
Bass, S.D., 1992, Int. J. Mod. Phys. A12, 1051.
Bass, S.D., 1997, Mod. Phys. Lett. A12, 1051.
Bass, S.D., 1998, Mod. Phys. Lett. A13, 791.
Bass, S.D., 1999, Eur. Phys. J. A5, 17.
Bass, S.D., 2002a, Phys. Rev. D65, 074025.
Bass, S.D., 2002b, Physica Scripta T99, 96.
Bass, S.D., 2003a, Phys. Rev. D67, 097502.
Bass, S.D., 2003b, Acta Phys. Pol. B 34, 5893.
Bass, S.D., 2004, Phys. Lett. B590, 115.
Bass, S.D., B.L. Ioffe, N.N. Nikolaev, and A.W. Thomas,

1991, J. Moscow Phys. Soc. 1, 317.
Bass, S.D., and A.W. Thomas, 1993a, Phys. Lett. B293, 457.
Bass, S.D., and A.W. Thomas, 1993b, J. Phys. G19, 925.
Bass, S.D., and P.V. Landshoff, 1994, Phys. Lett. B336, 537.
Bass, S.D., S.J. Brodsky, and I. Schmidt 1998, Phys. Lett.

B437, 417.
Bass, S.D., and M. Brisudova, 1999, Eur. Phys. J. A4, 251.
Bass, S.D., S.J. Brodsky, and I. Schmidt 1999, Phys. Rev.

D60, 034010.

Bass, S.D., and A. De Roeck, 2001, Eur. Phys. J. C18, 531.
Bass, S.D. and E. Marco, 2002, Phys. Rev. D65, 057503.
Bass, S.D., and A. De Roeck, 2002, Nucl. Phys. B (Proc.

Suppl.) 105, 1.
Bass, S.D., R.J. Crewther, F.M. Steffens, and A.W. Thomas,

2002, Phys. Rev. D66, 031901(R).
Bass, S.D., R.J. Crewther, F.M. Steffens, and A.W. Thomas,

2003, Phys. Rev. D68, 096005.
Baum, G., et al. (The E-130 Collaboration) , 1983, Phys. Rev.

Lett. 51, 1135.
Belitsky, A., X. Ji, and F. Juan, 2003b, Nucl. Phys. B656,

165.
Belitsky, A., X. Ji, and F. Juan, 2003, Phys. Rev. Lett. 91,

092003.
Bell, J., and R. Jackiw, 1969, Nouvo Cim. 60A, 47.
Bernard, V., T.R. Hemmert, and U.-G. Meissner, 2003, Phys.

Rev. D67, 076008.
Bianchi, N., and E. Thomas, 1999, Phys. Lett. B450, 439.
Bjorken, J.D., 1966, Phys. Rev. 148, 1467.
Bjorken, J.D., 1970, Phys. Rev. D1, 1376.
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